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1 Research Overview

• The research vehicle for this contract i/the largest possible computerthat ' can b conceived for the mid to
late 1990's. We call this machine an "American Resource ComputerA or ' WARC.te imagine this machine
to occupy several floors of a building. The nation could probably only afford one or two ARC's. The
machine will be used to solve large-scale scientific problems having both military and civilian applications.

This investigation addresses the hardware technology, software techniques, algorithms, communica-
tions, processing elements, and applications. The study is determining the plausibility (not feasibility) of
the machine. The technical challenges of such a machine serve as our guiding stimulus for the research
carried out and reported here.>

The chip technology that will be available for an ARC is consistent with the following parameters,
assuming a CMOS process witA = 0.125 microns.

.Size: lom X lom X 10m
-- FLOPS: 1015

Bits: I0Vs

Cost: $1-2 billion
Processors: 4 billion
Number of chips: 10 million/Clock: 200 MHz

Power: 100 MW (10W/chip)
Bisection bandwidth: 1016 bits/sec
Total node bandwidth: 1019 bits/sec

Component reliability: 1 hour MTBF
System reliability: ??

Research is required to overcome the numerous hurdles to making an ARC feasible. Of the issues to
be faced, the most problematic is system reliability) A mean time to failure of 105 hours is plausible, but
significant research must be done to achieve this goal economically.

Progress in the various research areas are highlighted in the forthcoming sections.

2 Circuits.) - .. .
Kevin Lam, Larry Dennision, and WillianDally have devvlbp4 a CMOS transceiver circuit that permits
high-speed digital signals to be transmitted in both directions over a single wire simultaneously [112].
The circuit is similar in concept to the hybrid used in telephone systems to convert a four-wire circuit
to a two-wire circuit. A current source driver sums the transmitted (forward) signal onto a transmission
line. A clocked differential receiver (a sense-amp) subtracts the forward signal from the superposition of
forward and reverse signals to recover the received (reverse) signal. Careful delay matching is required to
match the phase of the transmitted signal and the subtracted signal at high frequencies.

Operating in a single direction, the circuit demonstrates techniques that have recently been developed
by Daily's group for low-voltage CMOS signalling. The transmitted signal swing is 0.5V. The use of a
current source driver and a current-sensing receiver isolate the signal from power supply noise permitting
reliable signaling in noisy environments. The clocked receiver dissipates no static power, a significant
advantage over power-hungry cascode receivers.

SPICE simulations of the circuit using 2p CMOS parameters indicate that it operates reliably at
10OMbits/s. Prototype tranceivers have been fabricated in 2p CMOS through MOSIS and are currently
under evaluation.

Alexander lshii has also been working with Thomas Knight on an implementation of a self-terminating,
digitally-controlled, and ECL-compatihle output pad driver for high-speed integrated circuits. By auto-
matically series-terminating driven lines with their characteristic impedances, the driver realizes speed.
power, and noise improvements over conventional designs. The design has not yet been fabricated, but
simulations indicate that data-transition rates in excess of 100Mtlz are possible.
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3 Processing Elements

Anant Agarwal and his students have been working on processor design in connection with the Alewife
multiprocessor system. When the system cannot avoid a remote memory request and is forced to incur
the latency of the communication network, the Alewife processors try to tolerate the latency by rapidly
scheduling another process. Alewife can also tolerate synchronization latencies through the same context
switching mechanism. Because context switches are forced only on memory requests that require the
use of the interconnection network and on synchronization faults, the processor achieves high single- U
thread performance. They have designed a new processor architecture called APRIL that can rapidly
switch between processes. This fast context-switch is achieved by caching four sets of register frames on
the processor to eliminate the overhead of loading and unloading the process registers. The SPARCLE
processor is being implemented jointly with LSI Logic and SUN Microsystems through modifications to
an existing SPARC design. SPARCLE will switch between processes in 11 cycles and clock at 33MHz. In
the present period LSI has completed the RTL specification of the part, and the team at MIT is modifying
the test system used by LSI to include their model of the memory system.

4 Communications Topology and Routing Algorithms

William Dally and Hiromichi Aoki have been developing adaptive routing strategies that employ virtual
channels. The use of adaptive routing in a multicomputer interconnection network improves network
performance by making use of all available paths and provides fault tolerance by allowing messages to I
route around failed channels and nodes. Dally and Aoki have developed two deadlock-free adaptive
routing algorithms. Both algorithms allocate virtual channels using a count of the number of dimension
reversals a packet has performed to eliminate cycles in resource dependency graphs. The static algorithm
eliminates cycles in the network channel dependency graph. The dynamic algorithm improves virtual
channel utilization by permitting dependency cycles and instead eliminating cycles in the packet wait-for
graph. These algorithms are particularly well suited to VLSI implementation. They require less control
storage than table-driven routing algorithms and less data storage than packet-based routing algorithms.

They have conducted a simulation study to evaluate these two adaptive routing algorithms. For non-
uniform traffic patterns, these algorithms improve network throughput by a factor of three compared to
deterministic routing using the same number of virtual channels. The dynamic algorithm gives better I
performance at moderate traffic rates but requires source throttling to remain stable at very high (over
100% network capacity) traffic rates. Both algorithms allow the network to gracefully degrade in the
presence of faulty channels. With the dynamic algorithm, a failure of 8 percent of the network channels
(38 channels) in a 16-ary 2-cube increases latency on average by a factor of 2.2.

They are currently investigating implementation strategies for the dynamic adaptive routing algorithm.
William Dally and Larry Dennison have started a project to develop an architecture for a pro-

grammable, general-purpose network router. Suct, a router could be programmed to support many differentI
topologies, routing agorithms, and flow-control strategies. In contrast, conventional routers are hard-wired
to support a single network topology, routing algorithm, and flow-control strategy.

During the past six months. Dally and Dennison have sketched a h;gh-level architecture for such a
router. Input controllers in this proposed router execute a routing program to select the next channel
of a route. A hard-wired virtual-channel flow control mechanisms can be used by a routing program to
implement blocking, buffering, dropping, or misrouting flow control. They are currently investigating
issues involving instruction set design, collection and encoding of channel status information, and details
of the underlying flow control mechanism.

Dally and Dennison have also begun a study to develop methods for constructing highly-reliable, large-
scale interconnection networks. Their first step has been to study end-to-end and link-level retry protocols I
that, ensure reliable exactly-once message delivery. Under certain assumptions about message locality they
have been able to show that the number of buffers required for a reliable end-to-end protocol can remain
constant, as the network scales. They are currently evaluating these protocols using statistical models
of network traffic. They are also Aee!uping fault models for interconrection networks and investigating
methods for fault detection and containment.

I
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I William Dally's group has also been investigating methods for improving the physical efficiency of
multicomputer interconnection networks. An efficient network is one that makes the best possible use of
all available resources: chip area and wiring volume.

Over the past year they have developed and evaluated the express-cube topology [22]. Express cube
networks simultaneously approach the physical and information-theoretic limits of network performance.
For messages going long distances latency can be made arbitrarily close to the physical speed of light limit
by adding appropriate express channels. For short distances, latency grows logarithmically achieving the
information theoretic bound. By adding multiple express channels, throughput can be increased to use
all available wiring volume. Recently, they have been investigating practical methods for implementing
express cubes.

To achieve physical bounds on network throughput, flow control strategies are required that permit
the duty factor of network channels to approach 100 percent. Conventional queueing systems saturate at
between 25 and 50 percent capacity even on uniform loads because of resource coupling between buffers
and channels. A flow-controi method has recently been developed based on virtual channels [25] that
decouples buffer allocation from channel allocation enabling channel duty factors to approach 100 percent.

Network throughput can be increased by dividing the buffer storage associated with each aztwork
channel into several virtual channels. Each physical channel is associated with several small queues, virtual
channels rather than a single deep queue. The virtual channels associated with one physical channel are
allocated independently but compete with each other for physical bandwidth. Virtual channels decouple
buffer resources from transmission resources. This decoupling allows active messages to pass blocked
messages using network bandwidth that would otherwise be left idle. Simulation studies show that, given
a fixed amount of buffer storage per link, virtual-channel flow control increases throughput by a factor of
3.5, approaching the capacity of the network.

Their recent work on virtual-channel flow control has concentrated on a study of scheduling algorithms
for allocating channel bandwidth among competing buffers and on extending the technique to work with
the adaptive routing algorithms described above.

1 5 Systems Software

Anant Agarwal and his students have continued their work on automatic locality management in large-scale
multiprocessors. A prototype multiprocessor system called Alewife is being designed to incorporate these
methods. The past six months have seen substantial progress in several areas including runtime systems,
compiler technology, and scalable cache coherence methodology; these developments are described below,
after overviewing the bigger problem they are trying to solve.

Afe te w t soe,
Alewife is a large-scale multiprocessor with distributed shared memory. Reflecting the physical con-straints of three-dimensional space, the machine uses a cost-effective mesh network for communication.

This type of architecture scales in terms of hardware cost and allows the exploitation of locality. Unfortu-
nately, the non-uniform communication latencies make such machines hard to program because the onus
of managing locality invariably falls on the programmer. The goal of the Alewife project is to discover and
to evaluate techniques for automatic locality management in scalable multiprocessors in order to insulate
the programmer from the underlying machine details. Their approach to achieving this goal employs
techniques for latency minimization and latency tolerance.

Agarwal's group has developed, implemented, and evaluated several mechanisms in the Alewife com-
piler, runtime system, and hardware that will cooperate in enhancing communication locality, thereby
reducing communication latency and required network bandwidth.

* Shared-data caching in Alewife is an example of a hardware method for reducing communication
traffic. Agarwal's group has recently found a new solution to the cache coherence problem in scalable
multiprocessors, called LimitLESS directories. This scheme has been implemented in the Alewife
simulator, ASIM. Simulations on ASIM show that the LimitLESS cache -oherence protocol realizes
die performance of the full-map directory protocol, with the memory overhead of a limited directory,

but without excessive sensitivity to software optimization. The LimitLESS scheme implements a
small set of pointers in the memory modules, but when necessary, the scheme allows a memory
module to interrupt the processor for software emulation of a full-map directory. Since this new
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i
coherence scheme is partially implemented in software, it can work closely with a multiprocessor's
compiler and run-time system.

They have developed a near-neighbor scheduling method coupled with dynamic task partitioning
for minimization of communication latency. The design of the scheduling algorithms had to solve
several interesting problems relating to rapid context-switching in the processors, and live-lock in
the synchronization handlers. The scheduler has been implemented and runs on ASIM. On several
test programs, including Multigrid, ASIM simulations indicate that locality-based scheduling can I
improve the performance of even modest-sized (16-64 processors) network-based multiprocessors.

" They have defined a new intermediate form for the compilation of parallel languages to distributed
memory machines. The intermediate representation is called WAIF, which stands for Waif is
Alewife's Intermediate Form. Because WAIF includes information on data dependences and vol-
ume of communication, it will aid in automatic part ;tioning and placement of data and processes, to
minimize communications. A front end for a futures-based parallel dialect of C and for Mul-T are I
being written.

Other work by Agarwal and his students has involved developing large numeric and symbolic application
test suites for testing their ideas. Two versions of the multigrid relaxation algorithm now available, one
using static allocation of data and processes to processors, and the other using dynamic allocation.

His group has also come up with a new notion of scalability in parallel machines. Although scalability is
an important consideration in the design of parallel computer architectures, a commonly-accepted, precise I
definition for scalability does not exist. They have a new definition based on the notion of "asymptotic
speedup." This definition focuses on the mapping between a given algorithm's communication behavior
and the communication paths provided by a given architecture. Due to large differences in communication
requirements for different interesting algorithms, their definition is made with respect to both a given
architecture and a given algorithm. The effects of physical constraints imposed by the three-dimensionality
of space and fundamental limits on communication speeds are also considered.

They have recently shown that trace-driven simulations of caches and memory systems coupled with an I
analytical model of an interconnection network can yield accurate estimates of multiprocessor performance.
Although trace-driven simulation has been used heavily in the design of multiprocessors, they believe this
is the first validation of this important technique for multiprocessor studies.

6 Algorithms

Prof. Leighton continued work on the design of fast and fault-tolerant architectures and algorithms for
parallel computation. Hlighlights of the work during the past six months are summarized below.

Continued progress has been made on the development of the multibutterfly. As he has reported
previously, the multibutterfly appears to be an exceptionally promising network for fast highly-fault- i
tolerant message routing. Recent work has focussed on using multibutterfly-like architectures to route
messages in a cut-through and nonblocking fashion. (Previous work focused more on store-and-forward
applications.) The new experimental data obtained for multibutterfly networks demonstrates that the I
basic method is highly successful for all routing models tested, providing significant decreases in message

delay and message blocking for randomly generated traffic, as well as a very high degree of fault-tolerance.
Leighton has also developed smaller, faster, and more fault-tolerant sorting networks. Working with

Dr. Greg Plaxton (formally an MIT postdoc, and now a Professor at U.T. Austin), Professor Leighton
has discovered an entirely new approach to the classical problem of building fast sorting circuits. Sorting
circuits are used in a wide variety of applications, and have been the subject of much study during
the past 3 decades. Most recently, they have been used for packet switching in telephone and data I
networks. Although O(log N)-depth sorting networks were discovered in the early 1980's, they are highly
impractical due to the (large) size of the constant hidden by the big 0 notation. As a consequence,
Batcher's log N(log N + l)/2-depth network (discovered in the mid-1960's) is still the circuit of choice for I
most applications. The new circuit discovered by Leighton and Plaxton uses randomization and sorts N
numbers in clog N steps where c is probably less than 7.5, and experimentally is less than 4. Hence, the
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3circuit uses substantially less hardware and is faster than the Batcher circuit for problems of size 256 or
more. The Leighton/Plaxton circuit has the disadvantage that the items to be sorted must be scrambled
before they are sorted (the circuit works with very high probability for random inputs), but it has the
advantage of being highly fault-tolerant. Experimental data indicates that a 1000-input 50-level circuit
can sustain over 1000 random faults without losing reliability. The Batcher network, on the other hand,
is not at all fault-tolerant.

In other work, Prof. Leighton also made substantial progress on the problem of computing with faulty
arrays of processors, and on drawing graphs in the plane with high resolution.

Bruce Maggs, Derek Lisinski, and Tom Leighton have written a program to compare the performance of
randomly-wired multistage networks (such as the multibutterfly) to more traditional non-randomly-wired
multistage networks (such as the butterfly). The simulations show that in variety of routing contexts, in-
cluding circuit-switching, packet-switching, and cut-through routing, randomly-wired multistage networks
outperform non-randomly-wired networks constructed with equal hardware. In addition, the simulations
show that multibutterfly networks can tolerate large numbers of faults with little degradation in perfor-
mance.

During the past six months, James K. Park has been collaborating with Alok Aggarwal, Dina Kravets,
and Sandeep Sen on a number of problems relating to Monge arrays. Aggarwal and Park have been
studying the use of Monge arrays in solving economic lot-size problems arising in operations research.
Aggarwal, Kravets, Park, and Sen have been investigating parallel alogorithms for searching in staircase-
Monge arrays and the conversion of PRAM algorithms for searching in Monge arrays to algorithms for
hypercubes and related interconnection networks.

Park has also been working on his doctoral thesis, titled "The Monge Array: An Abstraction and
Its Applications." The thesis, a comprehensive study of Monge arrays and their applications, should be
completed by January 1991.

Marios Papaefthymiou completed his master's thesis [80] under the supervision of Charles Leiserson.
Papaefthymiou's thesis investigates problems on retiming and mixed-integer optimization. It presents
efficient algorithms for optimal pipelining of combinational circuitry. It gives a characterization of the
mininmum feasible clock-period of a general circuit, in terms of the maximum delay-to-register ratio of the
cycles i the circuit graph, that leads to more efficient algorithms for retiming. It describes the closed
semiring structure of unit-delay circuitry retiming. The thesis also includes recent work on mixed-integer
optim.zation. Specifically, it describes an O(V3 Ig V) algorithm for a mixed-integer optimization problem
that arises in retiming.

Tom Cormen is working on two practical issues that arise in parallel computing. One issue is the
interaction of context and parameter-passing in data-parallel computing. He is attempting to catalog how
existing data-parallel languages treat this issue and recommend a robust solution to this linguistic problem.
The second issue concerns virtual memory in data-parallel computing: how many disk operations and how
many processor operations are required to perform common operations on parallel vectors when virtual
processor ratios are so high that each physical processor can access only a small portion of its assigned
data at one time?

Shlomo Kipnis continued his research on the organization of systems with bussed interconnections.
During the past year he further explored the power of bussed interconnection schemes, interviewed for
a research position at several laboratories, and completed his Ph.D. requirements. He finished his dis-
sertation, entitled "Organization of Systems with Bussed Interconnections" [72], under the supervision of
Professor Charles Leiserson. His thesis contains three research contributions.

In his thesis, Kipnis first explores the problem of efficiently permuting data stored in VLSI chips in
accordance with a predetermined set of permutations. By connecting chips with shared bus intercon-
nections, as opposed to point-to-point interconnections, he shows that the number of pins per chip can
often be reduced. For example, he exhibits permutation architectures with vf/u pins per chip that can
realize any of the n cyclic shifts on n chips in one clock tick. When the set of permutations forms a
group with p elements, any permutation in the group caii he realized in one clock tick by an architecture
with O(VI17;) pins per chip. When the permutation group is abelian, only O(V/p) pins suffice. These

results are all derived from a mathematical characterization of uniform permutation architectures based on
the combinatorial notion of a difference cover, lie also considers uniform permutation architectures that
realize permutations in several clock ticks, instead of one, and shows that further savings in the number of
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pins per chip can be obtained. This research represents joint work with Joe Kilian and Charles Leiserson
(see [45]).

Next, Kipnis investigates priority arbitration schemes that use busses to arbitrate among n modules
in a digital system. He focuses on distributed mechanisms that employ m busses, for Ign < rn < n, and
use asynchronous combinational arbitration logic. A widely used distributed asynchronous mechanism
is the binary arbitration scheme, which with m = lgn busses arbitrates in t = lgn units of bus-settling
time. He presents a new asynchronous scheme - binomial arbitration - that by using m = lgn + 1
busses reduces the arbitration time to t = 1g n. Extending this result, he presents the generalized I
binomial arbitration scheme that achieves a bus-time tradeoff of the form m = 0(tn11 ') between the
number of arbitration busses m, and the arbitration time t (in units of bus-settling time), for values of
I << Ig n ana Ig n < m < n. These schemes are based on a novel analysis of data-dependent delays. I
Most importantly, these schemes can be adopted with no changes to existing hardware and protocols; they
merely involve selecting a good set of priority arbitration codewords. These results appeared in [46] and
a patent application on the new arbitration schemes was filed by the MIT Technology Licensing Office.

Finally, Kipnis examines the performance of priority arbitration schemes under a digital transmission I
line bus model. This bus model accounts for the propagation time of signals along bus lines and assumes
that the propagating signals are always valid digital signals. A widely held misconception is that in the
digital transmission line model the arbitration time of the binary arbitration scheme is at most 4 units of I
bus-propagation delay. He formally disproves this conjecture by demonstrating that the arbitration time
of the binary arbitration scheme is heavily dependent on the arrangement of the arbitrating modules in the
system. He provides a general scenario of module arrangement on m busses, for which binary arbitration
takes at least m/2 units of bus-propagation delay to stabilize. He also proves that for general arrangements
of modules on m busses, binary arbitration settles in at most m/2 + 2 units of bus-propagation delay, while
binomial arbitration settles in at most m/4 + 2 units of bus-propagation delay, thereby demonstrating the
superiority of binomial arbitration for general arrangements of modules under the digital transmission line
model. For linear arrangements of modules in increasing order of priorities and equal spacings between
modules, he shows that 3 units of bus-propagation delay are necessary for binary arbitration to settle, and
he sketches an argument that 3 units of bus-propagation delay are also asymptotically sufficient. I

Alexander Ishii has begun work on a stand-alone timing-verification system for level-clocked VLSI
circuits. The system implements and extends the timing-verification algorithms developed with Leiserson,
and is intended to demonstrate how their formal results can be adapted to address a wide variety of
high-performance circuit structures and engineering concerns.

Charles Leiserson led a group of researchers that included Bruce Maggs, Gregory Plaxton, Guy Blelloch
of CMU, Steven Smith of Thinking Machines, and Marco Zagha of CMU to develop a fast sorting parallel
sorting program. The work, sponsored in part by Thinking Machines, produced a fast implementation I
of the flashsort algorithm of Valiant and Reif. On a 64K-processor CM-2, their flashsort implementation
sorts 5 x 106 64-bit keys in under 1 second, which, to their knowledge, makes it the fastest general-purpose
sorting program ever reported. 3
7 Applications

Srinivas Devadas and his students have been continuing research in the areas of sequential logic synthesis,
synthesis for testability of combinational and sequential circuits, test generation and formal verification.

Devadas' group has considered the synthesis of robustly path-delay-fault testable circuits and shown
that a single property, Equivalent Normal Form (ENF) reducibility, allows us to unify previous results on
robust delay-fault testability and multifault testability, as well as to prove new ones. They use the notion of
ENF reducibility to show that a constrained version of a common area improving transformation namely,
algebraic resubstitution with complement retains robust path-delay-fault testability. Thus, in addition I
to providing a comprehensive framework for understanding previous results, a more efficient means of
synthesizing fully path-delay and gate-delay fault testable networks has been given. They have also used
ENF reducibility to show that constrained algebraic resubstitution with complement retains multifault
irredundancy [15].

They have also shown how a sophisticated orchestration of combinational synthesis for testability

I
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approaches can result in logic-level implementations of large integrated circuit designs that are completely
robustly path-delay-fault and mullifault testable. For control portions of VLSI circuits, they use algebraic
factorization procedures described above that guarantee path-delay-fault or multifault testability, starting
from a sum-of-products representation of a function. They use hierarchical composition rules [70] in
the synthesis of regular structures occurring in datapath portions, like parity generators and arithmetic
units. Test vectors to detect all path delay faults and multifaults can be obtained as a by-product of the
synthesis process. They have successfully used these techniques on circuits with over 5000 gates. They
present preliminary experimental results on a data encryption chip implementing the Viterbi algorithm,
a small p-processor and a speech recognition chip [28].

In the area of implementation verification, they have developed new, efficient algorithms for sequen-
tial logic verification based on the notion of implicit state enumeration [10]. These algorithms achieve
significant speed-ups over previous approaches to sequential logic verification.

Verifying that a logic-level description correctly implements a behavioral specification is considerably
less developed. One major hindrance toward a precise notion of behavioral verification has been that
parallel, serial or pipelined implementations of the same behavioral description can be implemented in
finite-state automata with different input/output behaviors. They have used nondeterminism to model
the degree of freedom that is afforded by parallelism in a behavioral description that also contains complex
control. Given some assumptions, the set of finite automata derivable from a behavioral description under
all possible schedules of operations can be represented compactly as an input-programmed automaton (p-
Automaton). The p-Automaton is named such due to the fact that during its derivation, they program
meta-input variables in the p-Automaton that are not present in the original description. The logic-level
implementation is deemed to be equivalent to the behavioral description if and only if the p-Automaton
is equivalent to the logic-level finite automaton under some assignment to the meta-input variables. The
above method allows for extending the use of finite-state automata equivalence-checking algorithms to the
problem of behavioral verification [27].

In the area of synthesis for sequential logic testability, Devadas' group has shown how register-transfer-
level (RTL) descriptions of a circuit can be used to efficiently synthesize circuits with over 1000 latches for
full non-scan single stuck-at fault testability. They have synthesized a version of the Viterbi processor for
full testability with no area or performance overhead [39]. Control portions of VLSI circuits can be synthe-
sized for sequential testability using recently developed decomposition algorithms [8]. A problem occurring
in the synthesis of controllers for non-scan testability requires optimization of Boolean relations. They
have developed heuristic procedures that optimize for Boolean relations guaranteeing a locally optimal
solution [38].

Over the past six months, Jacob White's efforts in developing numerical algorithms for problems
related to the design of an ARC, as well as those that can effectively exploit the ARC's capability, have
yielded several interesting results. His group now has useful programs for capacitance calculation and
hydrodynamic device simulation, as well as parallel implementions of both a device simulator and a
specialized circuit simulator. The parallel device simulator achieves a 15 times speed-up on a 16 processor
INTEL hypercube, and the parallel circuit, simulator exploits the Connection Machine effectively enough
to achieve a 1400 times speed-up over a SUN4 workstation. Below are described these results, and few
others, in more detail.

Three dimensional capacitance and inductance extraction has recently become important because the
donse packing of processors and memory required for high performance parallel computers require three
dimensional interconnection. White's group has finished developing a fast algorithm for computing the
capacitance of a complicated 3-D geometry of ideal conductors in a uniform dielectric. The method is
an acceleration of the standard integral equation approach for multiconductor capacitance extraction.

These integral equation methods are slow because they lead to dense matrix problems which are typically
solved with some form of Gaussian elimination. This implies the computation grows like n3 , where n is
the number of tiles needed to accurately discretize the conductor surface charges. We have developed
a preconditioned conjugate-gradient iterative algorithm with a multipole approximation to compute the
iterates. This reduces the complexity of the multiconductor capacitance calculations to grow roughly as
nrn where m is the number of conductors.

Performance comparisons on integrated circuit bus crossing problems show that for problems with as
few as twelve conductors, the multipole accelerated boundary element method in their program, FASTCAP,

8

nI n



!
can be as much as 500 times faster than more classic Gaussian elimination based boundary-element
algorithms, and five to ten times faster than the iterative method alone, depending on required accuracy
[125]. They recently generalized the program to interface with the solid-modeling program PATRAN,
used by the MIT CAF project. The generalization of FASTCAP, and the interfacing involved, provides
three new features: an excellent user interface; the ability to compute the capacitance of any general I
3-D structure, including curved objects like spheres; and the MIT CAF project can immediately use the
program to analyze electrostatic properties of microstructures.

In the area of circuit simulation, a specialized parallel simulator for grid-based analog signal processing I
arrays has been implemented on the massively parallel Connection Machine. Standard implicit integration
techniques are used in the program, except that a parallel block conjugate-gradient squared algorithm is
used to solve the linear systems generated for each integration timestep. Excellent parallel performance
of the algorithm is achieved through the use of a novel, but very natural, mapping of the circuit data
onto the massively parallel architecture. The mapping takes advantage of the underlying connection
machine architecture and the structure of the analog array problem. Experimental results using their
program, CMVSIM [35], demonstrate that a full-size Connection Machine running their parallel algorithm I
can simulate a realistic analog array 1400 times faster a SUN4/280 workstation running the fastest of the
known serial algorithms.

Also in the area of circuit simulation, White's group has completed some new work on methods for 3
simulating cloc!.ed analog circuits like switching power converters, switched-capacitor filters, and phase-
locked loops. Simulating these circuits is computationally expensive because they are clocked at a frequency
whose period is orders of magnitude smaller than the time interval of interest to the designer. It is possible
to reduce the simulation time without compromising much accuracy by exploiting the property that the I
behavior of switching converters in a given high-frequency clock cycle is similar, but not identical, to the
behavior in the preceding and following cycles. In particular, the "envelope" of the high-frequency clock can
be followed by accurately computing the circuit behavior over occasional cycles. They implemented such I
a method in the program NITSWIT, but the method was only effective on simplified circuits, and was not
able to skip many cycles on realistic circuits [58]. The difficulty was that realistic circuits typically include
circuitry which produces large rapid responses to small changes in slow moving variables. These rapidly
responding variables must be somehow eliminated before introducing the envelope-following, otherwise the
cycle skipping is severely limited. They are investigating automatic ways of eliminating those variables
based on examining the sensitivity matrix.

In the area of device simulation, White's group is continuing their work on parallel 2-D MOS device
simulation. They have a prototype simulator, which does steady-state calculations, running on the INTEL
hypercube. The program finishes 15 times faster on 16 processors than on one processer. They are currently
working on parallelizing their waveform relaxation algorithm for the transient calculations [64], as well as I
improving the physical models iii the simulator.

Although still useful for predicting terminal currents, the drift-diffusion model of electron transport
does not include enough information to accurately predict the carrier energy distribution in small geometry
devices. This is of particular importance for predicting oxide breakdown due to penetration by "hot" elec-
trons. They have been working on the numerical algorithms for solving the "hydrodynamic equations," for
electron transport, in which an energy balance equation is solved along with the drift-diffusion equations.
They have uncovered a discretization method for the hydrodynamic problem which is much more stable I
than other approaches, and allows very coarse meshes to be used during the simulation.
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Abstract

Caches enhance the performance of multiprocessors by reducing network traffic and av-
erage memory access latency. However, cache-based systems must address the problem of
cache coherence. We propose the LimitLESS directory protocol to solve this problem. The
LimitLESS scheme uses a combination of hardware and software techniques to realize the
performance of a full-map directory with the memory overhead of a limited directory. This
protocol is supported by Alewife, a large-scale multiprocessor. We describe the architec-
tural interfaces needed to implement the LimitLESS directory, and evaluate its performance
through simulations of the Alewife machine.

1 Introduction

The communication bandwidth of interconnection networks is a critical resource in large-scale
multiprocessors. This situation will remain unchanged in the future because physically con-
strained communication speeds cannot match the increasing bandwidth requirements of proces-
sors that leverage off of rapidly advancing VLSI technology. Caches reduce the volume of traffic
imposed on the network by automatically replicating data where it is needed. When a processor
attempts to read or to write a unit of data, the system fetches the data from a remote memory
module into a cache, which is a fast local memory dedicated to the processor. Subsequent ac-
cesses to the same data are satisfied within the local processing node, thereby avoiding repeat
requests over the interconnection network.

In satisfying most memory requests, a cache increases the performance of the system in two
ways: First, memory access latency incurred by the processors is shorter than in a system that
does not cache data, because typical cache access times are much lower than interprocessor
communication times (often, by several orders of magnitude). Second, when most requests are
satisfied within processing nodes, the volume of network traffic is also lower.

However, replicating blocks of data in multiple caches introduces the cache coherence prob-
lem. When multiple processors maintain cached copies of a shared memory location, local

3Submitted to ASPLOS-IV, 1991.
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modifications can result in a globally inconsistent view of memory. Buses in small-scale multi-
processors offer convenient solutions to the coherence problem that rely on system-wide broad-
cast mechanisms [1, 2, 3, 4, 5]. When any change is made to a data location, a broadcast is
sent so that all of the caches in the system can either invalidate or update their local copy of I
the location. Unfortunately, this type of broadcast in large-scale multiprocessors negates the
bandwidth reduction that makes caches attractive in the first place. Furthermore, in large-
scale multiprocessors, broadcast mechanisms are either inefficient or prohibitively expensive to 3
implement.

A number of cache coherence protocols have been proposed to solve the coherence problem
in the absence of broadcast mechanisms [6, 7, 8, 9]. These message-based protocols allocate a I
section of the system's memory, called a directory, to store the locations and state of the cached
copies of each data block. Instead of broadcasting a modified location, the memory system
sends an invalidate (or update) message to each cache that has a copy of the data. The protocol I
must also record the acknowledgment of each of these messages to ensure that the global view
of memory is actually consistent.

Although directory protocols have been around since the late seventies, the usefulness of I
the early protocols (e.g., [7]) was in doubt for several reasons: First, the directory itself was
a centralized monolithic resource which serialized all requests. Second, directory accesses were
expected to consume a disproportionately large fraction of the available network bandwidth.
Third, the directory became prohibitively large as the number of processors increased. To store
pointers to blocks potentially cached by all the processors in the system, the early directory
protocols (such as the Censier and Feautrier scheme [7]) allocate directory memory proportional
to the product of the total memory size and the number of processors. While such full-map
schemes permit unlimited caching, its directory size grows as O(N 2 ), where N is the number of
processors in the system. I

As observed in [8], the first two concerns are easily dispelled: The directory can be distributed
along with main memory among the processing nodes to match the aggregate bandwidth of
distributed main memory. Furthermore, required directory bandwidth is not much more than the
memory bandwidth, because accesses destined to the directory alone comprise a small fraction of
all network requests. Thus, recent research in scalable directory protocols focuses on alleviating
the severe memory requirements of the distributed full-map directory schemes.

Scalable coherence protocols differ in the size and the structure of the directory memory
that is used to store the locations of cached blocks of data. Limited directory protocols [8], for
example, avoid the severe memory overhead of full-map directories by allowing only a limited
number of simultaneously cached copies of any individual block of data. Unlike a full-map
directory, the size of a limited directory grows linearly with the size of shared memory, because
it allocates only a small, fixed number of pointers per entry. Once all of the pointers in a directory
entry are filled, the protocol must evict previously cached copies to satisfy new requests to read
the data associated with the entry. In such systems, widely shared data locations degrade system 1
performance by causing constant eviction and reassignment, or thrashing, of directory pointers.
However, previous studies have shown that a small set of pointers is sufficient to capture the
worker-set of processors that concurrently read many types of data [10, 11, 12]. The performance 3
of limited directory schemes can approach the performance of full-map schemes if the software
is optimized to minimize the number of widely-shared objects.

This paper proposes the LimitLESS cache coherence protocol, which realizes the performance I
2
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of the full-map directory protocol, with the memory overhead of a limited directory, but without

excessive sensitivity to software optimization. This new protocol is supported by the architecture
of the Alewife machine, a large-scale, distributed-memory multiprocessor. Each processing node
in the Alewife machine contains a processor, a floating-point unit, a cache, and portions of the
system's globally shared memory and directory. The LimitLESS scheme implements a small set3 of pointers in the memory modules, as do limited directory protocols. But when necessary, the

scheme allows a memory module to interrupt the processor for software emulation of a full-map
directory. Since this new coherence scheme is partially implemented in software, it can work3closely with a multiprocessor's compiler and run-time system.

Chained directory protocols [9], another scalable alternative for cache coherence, avoid both
the memory overhead of the full-map scheme and the thrashing problem of limited directories by
distributing directory pointer information among the caches in the form of linked lists. But unlike
the LimitLESS scheme, chained directories are forced to transmit invalidations sequentially

through a linked-list structure, and thus incur high write latencies for very large machines.
Furthermore, the chained directory protocol lacks the LimitLESS protocol's ability to couple
closely with a multiprocessor's software, as described in Section 6.

To evaluate the LimitLESS protocol, we have implemented the full-map directory, limited
directory, and other cache coherence protocols in ASIM, the Alewife system simulator. Since
ASIM is capable of simulating the entire Alewife machine, the different coherence schemes can
be compared in terms of absolute execution time. While we have used more generic metrics
(such as processor utilization or cycles per transaction) in past studies [10], simulated execution
time gives the closest approximation of the behavior of an actual multiprocessing system.

The next section describes the details of the Alewife machine's architecture that are rele-
vant to the LimitLESS directory protocol. Section 3 introduces the LimitLESS protocol, and
Section 4 presents the architectural interfaces and various hardware and software mechanisms
needed to implement the new coherence scheme. Section 5 describes the Alewife system simula-
tor and compares the different coherence schemes in terms of absolute execution time. Section 6
suggests extensions to the software component of the LimitLESS scheme that couple the co-
herence protocol with the machine's runtime system, and Section 7 summarizes the results and
discusses future work in this area.

I 2 The Alewife Machine

Alewife is a large-scale multiprocessor with distributed shared memory. The machine, organized
as shown in Figure 1, uses a cost-effective mesh network for communication. This type of archi-
tecture scales in terms of hardware cost and allows the exploitation of locality. Unfortunately,
the non-uniform communication latencies make such machines hard to program because the
onus of managing locality invariably falls on the programmer. The goal of the Alewife project is
to discover and to evaluate techniques for automatic locality management in scalable multipro-
cessors in order to insulate the programmer from the underlying machine details. Our approach
to achieving this goal employs techniques for latency minimization and latency tolerance.

Several mechanisms in the Alewife compiler, runtime system, and hardware cooperate in en-

hancing communication locality, thereby reducing communication latency and required network
bandwidth. Shared-data caching in Alewife is an example of a hardware method for reduc-
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Figure 1: An Alewife processing node with a LimitLESS directory extension.

ing communication traffic. This method is dynamic (uses run-time information), rather that I
static (compiler-specified). Lazy task creation (13] together with near-neighbor scheduling are
Alewife's software methods for achieving the same effect. 3

When the system cannot avoid a remote memory request and is forced to incur the latency of
the communication network, the Alewife processors rapidly schedule another process in place of
the stalled process. Alewife can also tolerate synchronization latencies through the same context I
switching mechanism. Because context switches are forced only on memory requests that require
the use of the interconnection network, and on synchronization faults, the processor achieves
high single-thread performance. Some systems [14] have opted to use weak ordering [15, 16, 17]
to tolerate certain types of communication latency, but this method lacks the ability to overlap
read-miss and synchronization latencies. Although the Alewife cache coherence protocol enforces
sequential consistency [18], the LimitLESS directory scheme can also be used with a weakly- 3
ordered memory model.

We have designed a new processor architecture that can rapidly switch between processes [19].
The firm* -ound implementation of the processor called SPARCLE will switch between processes I
in 11 cycles. This fast context-switch is achieved by caching four sets of register frames on the
processor to eliminate the overhead of loading and unloading the process registers. The rapid-
switching features of SPARCLE also allow an efficient implementation of LimitLESS directories. I

An Alewife node consists of a 33 MHz SPARCLE processor, 64K bytes of direct-mapped
cache, a 4M bytes of globally-shared main memory, and a floating-point coprocessor. Both
the cache and floating-point units are SPARC compatible [20]. The nodes communicate via
messages through a direct network [21] with a mesh topology using wormhole routing [22]. A
single-chip controller on each node holds the cache tags and implements the cache coherence I
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I protocol by synthesizing messages to other nodes. Figure 1 is an enlarged view of a node in
the Alewife machine. Because the directory itself is distributed along with the main memory,
its bandwidth scales with the number of processors in the system. The SPARCLE processor is
being implemented jointly with LSI Logic and SUN Microsystems through modifications to an
existing SPARC design. The design of the cache/memory controller is also in progress.

3 The LimitLESS Directory Protocol

I As do limited directory protocols, the LimitLESS directory scheme capitalizes on the observation
that only a few shared memory data types are widely shared among processors. Many shared
data structures have a small worker-set, which is defined as the set of processors that concurrently
read a memory location. The worker-set of a memory block corresponds to the number of active
pointers it would have in a full-map directory entry. The observation that worker-sets are often
small has led some memory-system designers to propose the use of a hardware cache of pointers
to augment the limited-directory for a few widely-shared memory blocks (12]. However, when
running properly optimized software, a directory entry overflow is an exceptional condition in
the memory system. We propose to handle such "protocol exceptions" in software. This is the
integrated systems approach - handling common cases in hardware and exceptional cases in
softwaxe.

The LimitLESS scheme implements a small number of hardware pointers for each directory
entry. If these pointers are not sufficient to store the locations of all of the cached copies of a given
block of memory, then the memory module will interrupt the local processor. The processor
will then emulate a full-map directory for the block of memory that caused the interrupt. The
structure of the Alewife machine provides for an efficient implementation of this memory system
extension. Since each processing node in Alewife contains both a memory controller and a
processor, it is a straightforward modification of the architecture to couple the responsibilities
of these two functional units. This scheme is called LimitLESS, to indicate that it employs a
Limited directory that is Locally Extended through Software Support. Figure 1 is an enlarged
view of a node in the Alewife machine. The diagram depicts a set of directory pointers that
correspond to the shared data block X, copies of which exist in several caches. In the figure,
the software has extended the directory pointer array (which is shaded) into local memory.3 Since Alewife's SPARCLE processor is designed with a fast trap mechanism, the overhead
of the LimitLESS interrupt is not prohibitive. The emulation of a full-map directory in software
prevents the LimitLESS protocol from exhibiting the sensitivity to software optimization that
is exhibited by limited directory schemes. But given current technology, the delay needed to
emulate a full-map directory completely in software is significant. Consequently, the LimitLESS
protocol supports small worker-sets of processors in its limited directory entries, implemented
in hardware.

3.1 A Simple Model of the Protocol

Before discussing the details of the new coherence scheme, it is instructive to eYamine a simple
model of the relationship between the performance of a full-map directory and the LimitLESS
directory scheme. Let Th be the average remote memory access latency for a full-map directory
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Component Name Meaning
Memory Read-Only Some number of caches have read-only copies of the data.

Read-Write Exactly one cache has a read-write copy of the data.
Read-Transaction Holding read request, update is in progress.
Write-Transaction Holding write request, invalidation is in progress. I

Cache Invalid Cache block may not be read or written.
Read-Only Cache block may be read, but not written.
Read-Write Cache block may be read or written. 3

Table 1: Directory states.

protocol. Th includes factors such as the delay in the cache and memory controllers, invalidation
latencies, and network latency. Given the hardware protocol latency Th, it is possible to esti-

mate the average remote memory access latency for the LimitLESS protocol with the formula:

T + mrot, where T, (the software latency) is the average delay for the full-map directory

emulation interrupt, and m is the fraction of memory accesses that overflow the small set of

pointers implemented in hardware.

For example, our dynamic trace-driven simulations of a Weather Forecasting program run-
ning on 64 node Alewife memory system (see Section 5) indicate that Th ' 35 cycles. If T, = 100
cycles, then remote accesses with the LimitLESS scheme will be 10% slower (on average) than I
with the full-map protocol when m 2 3%. Since the Weather program is, in fact, optimized

such that 97% of accesses to remote data locations "hit" in the limited directory, the full-map

emulation will cause a 10% delay in servicing requests for data. I
LimitLESS directories are scalable, because the memory overhead grows as O(N), and the

performance approaches that of a full-map directory as system size increases. Although in a 64

processor machine, Th and T. are comparable, in much larger systems the internode communi- I
cation latency will be much larger than the processors' interrupt handling latency (T" > T,).
Furthermore, improving processor technology will make T. even less significant. In such sys-

tems, the LimitLESS protocol will perform about as well as the full-map protocol, even if m = 1. I
This approximation indicates that if both processor speeds and multiprocessor sizes increase,

handling cache coherence completely in software will become a viable option. In fact, the Limit-

LESS protocol is the first step on the migration path towards interrupt-driven cache coherence. I
Other systems [23] have also experimented with handling cache misses entirely in software.

3.2 Specification of the LimitLESS Scheme I
In the above discussion, we assume that the hardware latency (Th) is approximately equal for
the full-map and the LimitLESS directories, because the LimitLESS protocol has the same state

transition diagram as the full-map protocol. The memory controller side of this protocol is
illustrated in Figure 2, which contains the memory states listed in Table 1. These states are

mirrored by the state of the block in the caches, also listed in Table 1. It is the responsibility
of the protocol to keep the states of the memory and the cache blocks coherent. The protocol
enforces coherence by transmitting messages (listed in Table 3) between the cache/memory

controllers. Every message contains the address of a memory block, to indicate which directory
entry should be used when processing the message. Table 3 also indicate whether a message

contains the data associated with a memory block. 3
6
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Figure 2: Directory state transition diagram for the full-map and LimitLESS coherence schemes.

The state transition diagram in Figure 2 specifies the states, the composition of the pointer
set (P), and the transitions between the states. Each transition is labeled with a number that

refers to its specification in Table 2. This table annotates the transitions with the following
information: 1. The input message from a cache which initiates the transaction and the identifier
of the cache that sends it. 2. A precondition (if any) for executing the transition. 3. Any
directory entry change that the transition may require. 4. The output message or messages that
are sent in response to the input message. Note that certain transitions require the use of an

acknowledgment counter (AckCtr), which is used to ensure that cached copies are invalidated
before allowing a write transaction to be completed.

For example. Transition 2 from the Read-Only state to the Read-Write state is taken when

cache i requests write permission (WREQ) and the pointer set is empty or contains just cache i
(P = {} or P = {i}). In this case, the pointer set is modified to contain i (if necessary) and the

memory controller issues a message containing the data of the block to be written (WDATA). 1 .

Following the notation in [8'. both full-map and LimitLESS are members of the DirNNB

class of cache coherence protocols. Therefore, from the point of view of the protocol specification,
the LimitLESS scheme does not differ substantially from the full-map protocol. In fact, the
LimitLESS protocol is also specified in Figure 2. The extra notation on the Read-Only ellipse
(S : n > p) indicates that the state is handled in software when the size of the pointer set
(n) is greater than the size of the limited directory (p). In this situation, the transitions with
the shaded labels (1, 2, and 3) are executed by the interrupt handler on the processor that is
local to the overflowing directory. When the protocol changes from a software-handled state to
a hardware-handled state, the processor must modify the directory state so that the memory

controller can resume responsibility for the protocol transitions.

'The Alewife machine will actually support an optimization of this transition that would sent a modify grant
(MODG). rather than write data (WDATA). For the purposes of this paper, such optimizations have been
eliminated in order to simplify the protocol specification.
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Transition Input Precondition Directory Entry Output
Label Message Change Message(s)

1 - RREQ P = P u {I RDATA - i
2 i -. WREQ P = Is WDATA - i

i -_ WREQ P = 0} P { WDATA - i
3 ,- WREQ P= {ki,.... k.1}AiP P={i}, AckCtr=n Vk, INV - k,

i --WREQ P={k . k.)AiEP P={i},AckCtr=n-1 Vk, #iINV-k,
4 j- WREQ P ={} P = 01 INV - s
5 - RREQ P={s} _P = 0)} INV - i

6 ,- REPM P={l P{} -
7 - RREQ BUSY -

- WREQ BUSY -j
- ACKC AckCtr 0 I AckCtr = AckCtr - 1 

,- REPM __ __ _ _ __

8 - ACKC AckCtr = 1, P = {i} WDATA -i
j-UPDATE P={m} _ WDATA - i

9 j-RREQ - BUSY j
j - WREQ - BUSY -

- REPM __

0 UPDATE P={s} M RDATA -,

Table 2: Annotation of the state transition diagram.

I

I

Type Symbol Name Data?

Cache to Memory RREQ Read Request
WREQ Write Request
REPM Replace Modified %/
UPDATE Update V/
ACKC Invalidate Acknowledge _

Memory to Cache RDATA Read Data V
WDATA Write Data V
INV Invalidate
BUSY Busy Signal

Table 3: Protocol messages for hardware coherence.

I
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Figure 3: Signals Between Processor and Controller.

The Alewife machine will support an optimization of the LimitLESS protocol that maximizes
the number of transactions that are serviced in hardware. When the controller interrupts the
processor due to a pointer array overflow, the processor completely empties the pointer array
into local memory. The fact that the directory entry is empty allows the controller to continue
handling read requests until the next pointer array overflow. This optimization is called Trap-
On-Write, because the memory controller must interrupt the processor upon a write request,
even though it can handle read requests itself. The next section explains the mechanisms that
are needed to implement the software/hardware hand-off required by the LimitLESS protocol.

4 Hardware Interfaces for LimitLESS

This section discusses the architectural properties and hardware interfaces needed to support
the LimitLESS directory scheme. We describe how these interfaces are supported in the Alewife
machine. Since the Alewife network interface is somewhat unique for shared-memory machines,
it is examined in detail. Afterwards, we introduce the additional directory state that Alewife
supports, over and above the state that is needed for a limited directory protocol, and examine
its application to LimitLESS. Other uses for the extra states are discussed in Section 6.

To set the stage for this discussion, examine Figure 3. The hardware interface between
the Alewife processor and controller consists of several elements. The address and data buses
permit processor manipulation of controller state and initiation of actions via simple load and
store instructions (memory-mapped 1/02). The controller returns two condition bits and several

* trap lines to the processor.

4.1 Necessary support for LimitLESS

To support the LimitLESS protocol efficiently, a cache-based multiprocessor needs several prop-
erties. First, it must be capable of rapid trap handling. Because LimitLESS is an extension of
hardware through software, the LimitLESS protocol will not perform well on processors or soft-
ware architectures that require hundreds of cycles to begin executing the body a trap handler.
The Alewife machine employs a processor with register windows (SPARCLE) and a finely-tuned
software trap architecture that permits trap code to begin execution within five to ten cycles
from the time that a trap is initiated.

2The memory-mapped I/O space is distinguished from normal memory space by a distinct Alternate Space
Indicator (ASI). In a way, the ASI bits are part of the address bus; see [20] for further details.
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Source Processor
Packet Length p

Opcode
operand 0
operand I

operand m - 1
data word 0
data word 1

data word n - 1

Figure 4: Uniform Packet Format for the Alewife Machine

I
Second, the processor needs complete access to coherence-related controller state such as

pointers and state bits in the hardware diiectories. This state will be modified, when appropriate.
by the LimitLESS trap handler. In Alewife, the directories are placed in a special region of
memory that may be read and written by the processor.

Finally, a machine implementing the LimitLESS protocol needs an interface to the net-
work that allows the processor to launc, and intercept cache-coherence protocol packets. Most I
shared-memory multiprocessors export little or no networ1 . ...- wonaliJy to the processor; the
Alewife machine is somewhat unique in this respect. lNetwork access is provided through the
Interprocessor-Interrupt (IPI) mechanism, wL.ch is discussed in the next section.

4.2 Interprocessor-Interrupt (IPI) in the Al .ew ' " machine

The Alewife machine supports a complete interface to the interconnection network. This inter-
face provides the processor with a superset of the network functionality needed by the cache-
coherence hardware. Not only can it be used to send and receive cache protocol packets, but it
can also be used to send preemptive messages to remote processors (as in message-passing ma-
chines). The name Interprocessor-Interrupt (IPI) comes from the preemptive nature of messages
that are directed to remote processors.

We stress that the IPI interface is a single generic mechanism for network access - not a
conglomeration of different mechanisms. The power of such a mechanism lies in its generality.

Network Packet Structure To simplify the IPI interface, network packets have a single,
uniform structure, shown in Figure 4. This figure includes only the information seen at the I
destination; routing information is stripped off by the network. The Packet Header contains
the ID of the source processor, the length of the packet, and an opcode. It is a single word
in the Alewife machine. Following the header are zero or more operands and data words. The I
distinction between operands and data is software-imposed; however, this is a useful abstraction
supported by the IPI interface.

Opcodes are divided into two distinct classes: protocol and interrupt. Protocol opcodes are I
10
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Figure 5: Simplified, Queue-based Diagram of the Alewife Controller

used for cache-coherence traffic; they are normally produced and consumed by the controller
hardware, but also be produced or consumed by the LimitLESS trap-handler. Protocol opcodes
encode the type of coherence transaction; for example, a read miss would generate a message
with <opcode = RREQ>, <Packet Length = 2>, and <OperandO = Address>. Packets with
protocol opcodes are called protocol packets.

Interrupt opcodes have their MSBs set and are used for interprocessor messages. Their format
is defined entirely by the software. Packets with interrupt opcodes are called interprocessor
interrupts and are processed in software at their destinations.

Transmission of IPI packets A simplified, queue-based diagram of the internals of the
Alewife controller is shown in Figure 5. This is a "memory-side" diagram; for simplicity it
excludes the processor cache.

The processor interface uses memory-mapped store instructions to specify destination, op-
code. and operands. It also specifies a starting address and length for the data portion of
the packet. Taken together. this information completely specifies an outgoing packet. Note
that operands and data are distinguished by their specification: operands are written explicitly
through the interface, while data is fetched from memory. The processor initiates transmission
by storing to a special trigger location, which enqueues the request on the IPI output queue.

Reception of IPI packets When the controller wishes to hand a packet to the processor, it
places it in a special input buffer, the IPI input queue. This queue is large enough for several
protocol packets and overflows into the network receive queue. The forwarding of packets to the
IPI queue is accompanied by an interrupt to the processor.

The header (source, length, opcode) and operands of the packet at the head of the IPI input
queue can be examined with simple load instructions. Once the trap routine has examined the

11
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Meta State Description
Normal Directory being handled by hardware.
Trans-In-Progress Interlock. Software processing in progress. I
Trap-On-Write Trap for WREQ, UPDATE, and REPM.
Trap-Always Trap for all incoming packets

Table 4: Directory Meta States for the LimitLESS protocol

header and operands, it can either discard the packet or store it to memory, beginning at a I
specified location. In the latter case, the data that is stored starts from a specified offset in the
packet. This store-back capability permits message-passing and block-transfers in addition to

enabling the processing of protocol packets with data.

IPI input traps are synchronous, that is, they are capable of interrupting instruction execu-
tion. This is necessary, because the queue topology shown in Figure 5 is otherwise subject to

deadlock. If the processor pipeline is being held for a remote cache-fill 3 and the IPI input queue
overflows, then the receive queue will be blocked, preventing the load or store from completing.
At this point, a synchronous trap must be taken to empty the input queue. Since trap code is
stored in local memory, it may be executed without network transactions.

4.3 Meta States for the LimitLESS protocol

As noted in Section 3, the LimitLESS protocol consists of a series of extensions to the ba-
sic limited directory protocol. That section discussed circumstances under which the memory 3
controller would invoke the software. Having discussed the IPI interface, we can examine the
hardware support for LimitLESS in more detail.

This support consists of two components, meta states and pointer overflow trapping. Meta
states are directory modes and are listed in Table 4. They may be described as follows:

" Coherence for memory blocks which are in Normal mode are handled by hardware. These
are lines whose worker-sets are less than or equal to the number of hardware pointers.

* The Trans-In-Progress mode is entered automatically when a protocol packet is passed
to software (by placing it in the IPI input queue). It instructs the controller to block on i
all future protocol packets for the associated memory block. The mode is cleared by the
LimitLESS trap code after processing the packet.

" For memory blocks that are in the Trap-On-Write mode, read requests are handled as usual,
but write requests (WREQ), update packets (UPDATE), and replace-modified packets

(REPM) are forwarded to the IPI input queue. When packets are forwarded to the IPI I
queue, the directory mode is changed to Trans-In-Progress.

" Trap-Always instructs the controller to pass all protocol packets to the processor. As with
Trap-On-Write, the mode is switched to Trans-In-Progress when a packet is forwarded to

'In the Alewife machine, we have the option of switching contexts on cache misses (see [19]). However, certain
forward-progress concerns dictate that we occasionally hold the processor while waiting for a cache-fill.
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I the processor.

The two bits required to represent these states are stored in directory entries along with the
states of Figure 2 and the five hardware pointers.

Controller behavior for pointer overflow is straightforward: when a memory line is in the
Read-Only state and all hardware pointers are in use, then an incoming read request for this
line (RREQ) will be diverted into the IPI input queue and the directory mode will be switched
to Trans-In- Progress.

Local Memory Faults What about local processor accesses? A processor access to local
memory that must be handled by software causes a memory fault. The controller places the
faulting address and access type (i.e. read or write) in special controller registers, then invokes
a synchronous trap.

A trap handler must alter the directory when processing a memory fault to avoid an identical
fault when the trap returns. To permit the extensions discussed in Section 6, the Alewife machine
reserves a one bit pointer in each hardware directory entry, called the Local Bit. This bit ensures
that local read requests will never overflow a directory. In addition, the trap handler can set
this bit after a memory fault to permit the faulting access to complete.

4.4 Use of Interfaces in LimitLESS Trap

A possible implementation of the LimitLESS trap handler is as follows: when an overflow trap
occurs for the first time on a given memory line, the trap code allocates a full-map bit-vector
in local memory. This vector is entered into a hash table. All hardware pointers are emptied
and their corresponding bits are set in this vector. The directory mode is set to Trap-On-Write
before the trap returns. When additional overflow traps occur, the trap code locates the full-
map vector in the hash table, emptying the hardware pointers and setting their corresponding
bits in this vector.

Software handling of a memory line terminates when the processor traps on an incoming
write request (WREQ) or local write fault. The trap handler finds the full-map bit vector and
empties the hardware pointers as above. Next, it records the identity of the requester in the
directory, sets the acknowledgment counter to the number of bits in the vector that are set, and
places the directory in the Normal mode, Write Transaction state. Finally, it sends invalidations
to all caches with bits set in the vector. The vector may now be freed. At this point, the memory
line has returned to hardware control. When all invalidation are acknowledged, the hardware
will send the data with write permission to the requester.

Of course, this is only one of a number of possible LimitLESS trap handlers. Since the trap
handler is part of the Alewife software system, many other implementations are possible.

5 Performance Measurements

This section describes some preliminary results from the Alewife system simulator that compare
the performance of limited. LimitLESS, and full-map directories. The protocols are evaluated in
terms of the total number of cycles needed to execute an application on a 64 processor Alewife

13
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Figure 6: Diagram of ASIM, the Alewife system simulator.

machine. Using execution cycles as a metric emphasizes the bottom line of multiprocessor design:
how fast a system can run a program.

5.1 The Measurement Technique

The results presented below are derived from complete Alewife machine simulations and from I
dynamic post-mortem scheduler simulations. Figure 6 illustrates these two branches of ASIM,
the Alewife Simulator.

ASIM models each component of the Alewife machine, from the multiprocessor software to
the switches in the interconnection network. The complete-machine simulator runs programs
that are written in the Mul-T language [24], optimized by the Mul-T compiler, and linked with a
runtime system that implements both static work distribution and dynamic task partitioning and
scheduling. The code generated by this process runs on ASIM, the Alewife machine simulator,
which consists of processor, cache/memory, and network modules.

Although the memory accesses in ASIM are usually derived from applications running on
the SPARCLE processor, ASIM can alternatively derive its input from a dynamic post-mortem
trace scheduler, shown on the right side of Figure 6. Post-mortem scheduling is a technique that

generates a parallel trace from a uniprocessor execution trace that has embedded synchronization
information [25]. The post-mortem scheduler is coupled with the memory system simulator and
incorporates feedback from the network in issuing trace requests, as described in [26]. The use
of this input source is important because it lets us expand the workload set to include large
parallel applications written in a variety of styles.

As shown in Figure 6, both the full-machine and the dynamic post-mortem simulations use 3
14



the same cache/memory and network simulation modules. The cache/memory simulator can be
configured to run a number of different coherence schemes, including software-enforced coherence
and a scheme that only caches private data. In addition, the memory simulator can vary more
basic parameters such as cache size and block size. The network simulator can model both
circuit and packet switching interconnects, with either mesh or Omega topologies.

The simulation overhead for large machines forces a trade-off between application size and
simulated system size. Programs with enough parallelism to execute well on a large machine
take an inordinate time to simulate. When ASIM is configured with its full statistics-gathering
capability, it runs at about 5000 processor cycles per second on an unloaded SPARCserver 330.
At this rate, a 64 processor machine runs approximately 80 cycles per second. Most of the
simulations that we chose for this paper run for one million cycles (a fraction of a second on a
real machine), which takes 3.5 hours to complete. This lack of simulation speed is one of the
primary reasons for implementing the Alewife machine in hardware - to enable a thorough
evaluation of our ideas.

For the purpose of evaluating the potential benefits of the LimitLESS coherence scheme,
we implemented an approximation of the new protocol in ASIM. The technique assumes that
the overhead of the LimitLESS full-map emulation interrupt is approximately the same for
all memory requests that overflow a directory entry's pointer array. This is the T. parameter
described in Section 3. During the simulations, ASIM simulates an ordinary full-map protocol.
But when the simulator encounters a pointer array overflow, it stalls the both the memory
controller and the processor that would handle the LimitLESS interrupt for T. cycles. While this
evaluation technique only approximates the actual behavior of the fully-operational LimitLESS
scheme, it is a reasonable method for determining whether to expend the greater effort needed
to implement the complete protocol.

5.2 Performance Results

Figure 7 presents the performance of a statically scheduled multigrid relaxation program on a
64-processor Alewife machine. This program was written in Mul-T and runs on a complete-
machine simulation. The vertical axis on the graph displays several coherence schemes, and
the horizontal axis shows the program's total execution time (in millions of cycles). All of
the protocols, including the four-pointer limited directory (Dir4NB), the full-map directory,
and the LimitLESS scheme with full-map emulation latencies of 50 and 100 cycles (T. = 50
and T, = 100) require approximately the same time to complete the computation phase. This
confirms the assumption that for applications with small worker-sets, such as multigrid, the
limited (and therefore the LimitLESS) directory protocols perform almost as well as the full-
map protocol. See [10] for more evidence of the general success of limited directory protocols.

A weather forecasting program, simulated with the dynamic post-mortem scheduling method,
provides a case-study of an application that has not been completely optimized for limited direc-
tory protocols. Although the simulated application uses software combining trees to distribute
its barrier synchronization variables, Weather has one variable that is initialized by one pro-
cessor and then read by all of the other processors. Our simulations show that if this variable
is flagged as read-only data, then a limited directory performs just as well for Weather as a
full-map directory.

However. it is easy for a programmer to forget to perform such optimizations, and there
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Figure 8: Weather, 64 Processors, limited and full-map directories. N
are some situations where it is very difficult to avoid this type of sharing. Figure 8 gives the I
execution times for Weather when this variable is not optimized. The results show that when the
worker-set of a single location in memory is much larger than the size of a limited directory, the

whole system may suffer from hot-spot access to this location. So, limited directory protocols are
extremely sensitive to the size of a heavily-shared data block's worker-set. If a multiprocessor's
software is not perfectly optimized, limited directory thrashing may negate the benefits of caching

shared data.I
The effect of the unoptimized variable in Weather was not evident in previous evaluations of

directory-based cache coherence (10], because the network model did not account for hot-spot

behavior. Since the program can be optimized to eliminate the hot-spot, the new results do not
contradict the conclusion of [10] that system-level enhancements make large-scale cache-coherent
multiprocessors viable. Nevertheless, the experience with the Weather application reinforces the

belief that complete-machine simulations are necessary to evaluate the implementation of cache
coherence.

As shown in Figure 9, the LimitLESS protocol avoids the sensitivity displayed by limited
directories. This figure compares the performance of a full-map directory, a four-pointer limited

directory (Dir4 ,NB), and the four-pointer LimitLESS (LimitLESS 4 ) protocol with several values
for the additional latency required by the LimitLESS protocol's software (T, = 25, 50, 100, and 3
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150). The execution times show that the LimitLESS protocol performs about as well as the
full-map directory protocol, even in a situation where a limited directory protocol does not
perform well. Furthermore, while the LimitLESS protocol's software should be as efficient as
possible. the performance of the LimitLESS protocol is not strongly dependent on the latency

of the full-map directory emulation. The current estimate of this latency in the Alewife machine
is between 50 and 100 cycles.

It is interesting to note that the LimitLESS protocol, with a 25 cycle emulation latency,

actually performs better than the full-map directory. This anomalous result is caused by the
participation of the processor in the coherence scheme. By interrupting the Weather application
software and slowing down certain processors, the LimitLESS protocol produces a slight back-off

effect that reduces contention in the interconnection network.

The number of pointeis that a LimitLESS protocol implements in hardware interacts with3 the worker-set size of data structures. Figure 10 compares the performance of Weather with
a full-map directory, a limited directory, and LimitLESS directories with 50 cycle emulation

latency and one (LimitLESSI), two (LimitLESS 2 ), and four (LimitLESS 4 ) hardware pointers.

The performance of the LimitLESS protocol degrades gracefully as the number of hardware

pointers is reduced. The one-pointer LimitLESS protocol is especially bad, because some of
Weather's variables have a worker-set that consists of exactly two processors.

This behavior indicates that multiprocessor software running on a system with a LimitLESS
protocol will require some of the optimizations that would be needed on a system with a limited

directory protocol. However, the Limit LESS protocol is much less sensitive to programs that are

not perfectly optimized. Moreover, the software optimizations used with a LimitLESS protocol
should not be viewed as extra overhead caused by the protocol itself. Rather, these optimizations

might be employed, regardless of the cache coherence mechanism, since they tend to reduce hot-

spot contention and to increase communication locality.

6 Extensions to the LimitLESS Scheme

Using the interface described in Section 4, the LimitLESS protocol may be extended in several

ways. The simplest type of extension uses the LimitLESS trap handler to gather statistics about
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Figure 10: Weather, 64 Processors, LimitLESS scheme with 1, 2, and 4 hardware pointers. 3
shared memory locations. For example, the handler can record the worker-set of each variable
that overflows its hardware directory. This information can be fed back to the programmer or
compiler to help recognize and minimize the use of such variables. For studies of data sharing, a
number of locations can be placed in the Trap-Always directory mode, so that they are handled
entirely in software. This scheme permits complete profiling of memory transactions to these
locations without degrading performance of non-profiled locations.

More interesting enhancements couple the LimitLESS protocol with the compiler and run-

time systems to implement various special synchronization and coherence mechanisms. Previous U
studies such as [27] have examined the types of coherence which are appropriate for varying data

types. The Trap-Always and Trap-On-Write directory modes (defined in Section 4) can be used
to synthesize some of these coherence types. For example, the LimitLESS trap handler can I
cause FIFO directory eviction for data structures that are known to migrate from processor to

processor. A FIFO lock data type provides another example; the trap handler can buffer write
requests for a programmer-specified variable and grant the requests on a first-come, first-serve I
basis. The directory trap modes can also be used to construct objects that update (rather than
invalidate) cached copies after they are modified.

The mechanisms that we propose to implement the LimitLESS directory protocol provide
the type of generic interface that can be used for many different memory models. Judging by the
number of synchronization and coherence mechanisms that have been defined by multiprocessor
architects and programmers, it seems that there is no lack of uses for such a flexible coherence
scheme.

7 Conclusion

This paper proposed a new scheme for cache coherence, called LimitLESS, which is being im- I
plemented in the Alewife machine. Hardware requirements include rapid trap handling and
a flexible processor interface to the network. Preliminary simulation results indicate that the

LimitLESS scheme approaches the performance of a full-mapped directory protocol with the I
memory efficiency of limited directory protocol. Furthermore, the LimitLESS scheme provides
a migration path toward a future in which cache coherence is handled entirely in software.
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I Abstract

The use of adaptive routing in a multicomputer interconnection network im-

proves network performance by making use of all available paths and provides
fault tolerance by allowing messages to route around failed channels and nodes.

This paper describes two deadlock-free adaptive routing algorithms. Both algo-
rithms allocate virtual channels using a count of the number of dimension reversals
a packet has performed to eliminate cycles in resource dependency graphs. The
static algorithm eiminates cycles in the network channel dependency graph. The
dynamic algorithm improves virtual channel utilization by permitting dependency
cycles and instead eliminating cycles in the packet wait-for graph. We prove that
these algorithms are deadlock-free and give experimental measurements of their
performance. For non-uniform traffic patterns, these algorithms improve network
throughput by a factor of three compared to deterministic routing. The dynamic
algorithm gives better performance at moderate traffic rates but requires source
throttling to remain stable at high traffic rates. Both algorithms allow the network
to gracefully degrade in the presence of faulty channels.

Keywords: Interconnection Networks. communication networks, packet routing, flow control.

concurrent computing, parallel processing. multicomputers.

1 Introduction

1.1 Interconnection Networks

Interconnection networks are used to pass messages containing data and synchronization
information between the nodes of concurrent computers [2, 16, 20, 7]. The messages
may be sent between the processing nodes of a message- passing nmulticomputer [2] or

T'he research described in this paper was supported in part by the Defense Advanced Research

lrojects Agency tinder coitracts N00014-88K-0738 and N0001 '-87K-0825 and in part by a National
Science F oundation Presidit i al Yomiig Investigator Award, grant MIP-8657531. with matching funds
froiii General llectric Corporation and 113M Corporation.
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Figure 1: Routing packets in an 8-ary 2-cube from (i,0) to (7,i). (A) Using dimension
order routing, seven packets must traverse the channel from (6,0) to (7.0). (B) Using
adaptive routing. all packets proceed simultaneously increasing throughput by a factor
of 7. I
between the processors and memories of a shared-memory multiprocessor [16]. The in-
terconnection network is often the critical component of a large parallel computer because I
performance is very sensitive to network latency and throughput and because the network
accounts for a large fraction of the cost and power dissipation of the machine.

An interconnection network is characterized by its topology, routing, and flow control
[9]. The topology of a network is the arrangement of its nodes and channels into a graph.
Routing determines the path chosen by a message in this graph. Flow control deals with
the allocation of channel and buffer resources to a message as it travels along this path.
This paper deals with routing and flow control. Specifically, it is concerned with adaptive

routing, a method for choosing a path through a network depending on the current state
of the network. The methods described here are applicable to any topology; however.
the examples in this paper consider their application to k-ary n-cube interconnection 

networks [10].

1.2 The Problem I
Most existing routing networks [16, 20, 7] use deterministic routing. With deterministic
routing, the path followed by a packet is determined solely by the source and destination
of the message. If any channel along this path is heavily loaded, the packet, will be
delayed. If any channel along this path is faulty the packet cannot be delivered. A
coimt mon deterministic routing algorithm is dimension-order routing where the packet
routes in one dimension at a time, arriving at the proper coordinate in each dimension

lefore proceedinlg to the next dimension. I
Adaptive routing improves both t he performance and fault tolerance of an interconnect ion
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Figure 2: An 8-ary 2-cube network with a faulty channel from (3,4) to (4,4). (A) With
dimension order routing. packets from the shaded area on the left to the shaded area
on the right cannot be delivered. (13) Using adaptive routing packets can he delivered
between all pairs of nodes.

network. Figure 1 shows a S-arv 2-cube in which the node with coordinate (i.0) sends
a packet to the node with coordinate (7,i). With dimension order deterministic routing
(Figure IA). seven of the eight packets must traverse the channel from (6,0) to (7,0).
Thus only one of these sevcn packets can proceed at a time. With adaptive routing
(Figure 1 B) all of the packets can proceed simultaneously using alternate paths. For the
traffic pattern shown in this example. adaptive routing increases throughput by a factor
of seven.

Figure 2 shows the same network with a faulty channel from (3.4) to (4.4). With
dimension-order deterministic routing. packets from node (i,4) to node (jk) where i<3
and j>4 cannot be delivered. With adaptive routing, all messages can be delivered by
routing around the faulty channel.

1.3 Adaptive Routing with Virtual Channels

Adaptive routing must be performed in a manner that is deadlock-free. Deadlock in an

interconnection network occurs whenever there is a cyclic dependency for resources. For
example, Figure 3 shows two messageS deadlocked because each needs access to a channel
currently occupied by the other.

Networks that use dimension order routing avoid deadlock by ordering channels so that
messages travel along paths of strictly increasing channel numbers [13]. Channels are
ordered so that all of the channels in each dimension are greater than all of the channels
in the preceding dilnension. This ordering eliminates cycles in the channel dependency
graph and thus prevents deadlock. The ordering also prevents the use of adaptive routing
sirce restricting dirnension clia nges to be monoton i eliminates alternate paths.

:3



U
U

I

Figure 3: Two messages may become deadlocked if each is waiting on a resource (in this
case a channel) held by the other.

This paper presents two deadlock-free adaptive routing algorithms. Both algorithms
permit misrouting and avoid deadlock using virtual channels to eliminate cyclic depen- I
dencies. The static algorithm eliminates cycles in the channel dependency graph by
numbering virtual channels and routing packets to traverse virtual channels in increas-
ing order. It permits di mnsion reversals, routing from a higher dimension to a lower
dimension. by using virtual channels. Each packet is labeled with a dimension reversal
number that is initialized to zero. Each time a packet performs a dimension reversal, its I
dimension reversal number is incremented and it is routed on a class of virtual channels
used only by packets with the same dimension reversal number. The number of classes
of virtual channels places an tipper limit on the maximum number of dimension reversals U
permitted. Once a packet has made this number of dimension reversals, it is restricted
to dimension order routing.

The static algorithm restricts the number of dimension reversals permitted and makes
inefficient use of the pool of virtual channels. A packet may be blocked waiting for a
virtual channel in its dimension reversal class, while many other virtual channels for the I
same physical channel remain idle.

The dynamic algorithm overcomes these limitations by permitting cycles in the channel 5
dependency graph. Deadlock is avoided by eliminating cycles from the packet wailt-for
graph. As with the static algorithm, packets are labeled with their dimension reversal
number. Packets may use any class virtual channel during routing: however they are I
not permitted to wait for a virtual channel held by a packet with a lower dimension
reversal number. If all available virtual channels are occupied by packets with lower
dimension reversal numbers, the packet reverts to dimension order routing on a set of
virtual channels reserved for this )urpose.

1The dlviallic algorit lin places no restrictions on the number of dimension reversals 3
I
I



3 permitted2 . This algorithm also makes more efficient use of virtual channels bv allowing
any packet to use any idle virtual channel.

1.4 Related Work

Virtual channels were introduced in [13] for purposes of deadlock avoidance. This paper
showed how a cyclic network can be made deadlock-free by restricting routing so there are
no cycles in the channel dependency graph and then adding virtual channels to reconnect
the network. Virtual channels have also been used to support multiple virtual circuits
[3], and to increase network throughput [11].

A deadlock-free adaptive routing algorithm based on virtual channels is described in [S].
[9], and [17]. However, this algorithm does not permit misrouting (routing a packet along
a non-shortest path) and thus cannot route around certain Petwork faults. An adaptive
wormhole routing algorithm that permits misrouting is described in [18]; however, this
algorithm is not, deadlock-free. Ngai and Seitz [19] describe an adaptive routing algorithm
for store-and-forward networks based on packet exchange. Another store-and-forward
adaptive routing algorithm based on promotion is described in [1]. These two algorithms
require that entire packets be buffered and thus cannot be used with wormhole routing.
Wide area networks often use table-based adaptive routing algorithms [21]. Circuit-
switched networks have used adaptive routing algorithms based on tree search [5].

I 1.5 Outline

The next section introduces the notation, terminology, and assumptions that will be used
throughout this paper. Section 3 describes the two deadlock-free adaptive routing algo-
rithms in more detail and proves that they are deadlock free. The results of experiments
using these algorithms are described in Section 4.

2 Preliminaries

2.1 Topology

An interconnection network is a strongly-connected, directed graph, I = G(N, C). The
vertices of I are a set of inod.s. N. The edges are a set of channels, C C N x N. Each

"As a practical inatter, the nuirtber of diniension reversals will be limited by the size of the packet
header field used to hold the packet's dimension reversal number.
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channel is unidirectional and carries data from a source node to a destination node. A
bidirectional network is one where (nl,n2) E C =- (n2,nl) E C.

2.2 Flow Control I

Communication between nodes is performed by sending messages. A message may be
broken into one or more packets for transmission. A packet is the smallest unit of infor-

mation that contains routing and sequencing information. A packet contains one or more

flow control digits or flits. A flit is the smallest unit on which flow control is performed. I
Information is transferred over physical channels in physical transfer units or phits. A
phit is usually the same size or smaller than a flit.

Each physical channel, ci E C, in the network is composed of one or more virtual channels,
c0 E C'. The virtual channels associated with a single physical channel share physical

channel bandwidth, allocated on a flit by flit basis. However, each virtual channel contains I
its own queue and is allocated on a packet by packet basis independently of the other
virtual channels. For purposes of deadlock analysis, each virtual channel is logically a

separate channel.

2.3 Routing I
A packet is assigned a route through the network according to a routing relation. R C

C' x N x C'. Given th virtual channel occupied by the head of the packet and tile
destination node of the packet, the routing relation specifies a ,possibly singleton) set of

virtual channels on which the packet may be routed.

A selection function, p(P(C'), a) -+ C', is used to pick the next channel of the route from
the elements of this set using some additional information, a. This additional information

may include the occupancy and/or operational status of channels in the network. The
next channel selected for a packet, pi, is denoted next(pi).

The channel dependency graph for an interconnection network, I, and routing relation, I
R is a directed graph, D = G(C', E). Its vertices are C', the virtual channels of I, and
its edges are given by the projection of the routing relation onto C' x C': 3

E = {(c,.c i)(ci,n,c) E R for some n E N}. (1) 1

Consider a network, I. occupied by a set of packets, P, where each packet, pi E P.
occupies a particular set of virtual channels, occ(pi) C C'. The wait for graph of I is

a directed graph. II' = (;(P, Ew). The vertices of W are P, the set of packets in the

6
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Figure 4: A k-ary n-cube is a cube of n dimensions with k nodes in each dimension.
(A) Meshes are cubes with each dimension connected in a linear array. (B) Connecting
each dimension in a ring gives a Tori. (C) Higher dimensional cubes are constructed by
combining like elements of lower dimensional cubes.

network at a given instance of time. There is an edge of IV, ei E E, for each packet
that is waiting on another packet to acquire a resource:

Eij, {(pi,p,)tnext(p,) E occ(p 3 )}. (2)

2.4 Performance

The performance of a fault-free network is measured in terms of its latency, T, and its
throughput. Aat. The latency of a message is the elapsed time from when the message
send is initiated until the message is completely received. Network latency is the aver-

age message latency under specified conditions. Network throughput is the number of
messages the network can deliver per unit time.

The performance of a faulty network is measured in terms of latency, throughput, and
node loss. The latency and throughput of a network degrade as channels fail. The rate
at which they degrade gives a figure of merit for the network. Node loss is the fraction
of fault-free nodes that become disconnected from some other fault free node.

2.5 k-ary ii-cube Networks

A k-are n-cube is a radix k cube with n dimensions having N = kr' nodes. The radix

I7
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implies that there are k-nodes in each dimension. The nodes in each dimension may
be connected in a linear array giving a mesh network (Figure 4A) or in a ring giving a
torus network (Figure 4B). A k-ary 1-cube (Figure 4A,B) is a k node ring or linear array.
A k-ary 2-cube (Figure 4C) is constructed by taking k k-ary 1-cubes and connecting
like elements. In general, a k-ary n-cube is constructed from k k-ary (n - 1)-cubes by
connecting like elements into rings or linear arrays.

Every node has an address that is an n digit, radix k number, a,,_ ... ao. Each address I
digit, ad, represents a node's coordinate in dimension d and can take on values in the
range [0, k - 1]. In a torus network, nodes are connected to all nodes with an address
that differs in only one digit by ±1 mod k. In a mesh, nodes are connected to all nodes
with an address that differs in one digit by ±1 where the result is in the range [0., k - 1].

The dimensions and directions of the cube partition the set of virtual channels. C', into I
subsets for each dimension: CO0 , CO ... ,C(,_i)O' C -1)1. A channel, c,, with source. n,.
and destination, hd, whose addresses differ in the dth position is said to be a channel in
the dth dimension. If n, > 71d, ci G Cd0. If ns < nd, ci E Cd1 . This definition partitions
the two directions of a given direction into distinct channel sets.

Many networks are included in the family of k-ary n-cubes. At the extreme of k = 2, we
have a binary n-cube. At the extreme of n = 1 we have a ring or linear array. For 72 = 2
we have a torus or 2D mesh. These networks have been used in several message passing

computers [20, 6, 7]. For the remainder of this paper we consider only mesh-connected
k-ary n-cubes.

3 Adaptive Routing Algorithms

This section describes two deadlock-free adaptive routing algorithms that use a packet's
dimension reversal number to avoid cycles in resource dependency graphs. First dimen-
sion reversals are defined and the static and dynamic algorithms for assigning virtual
channels to packets are presented and proved deadlock free. Finally, strategies for select-
ing among admissible channels that guarantee progress are described.

3.1 Dimension Reversals I

The dimension reversal number of a packet is the count of the number of times a packet
has routed from a channel in one dimension, p, to a channel in a lower dimension, q < p. I
Dimension reversal (DR) numbers are assigned to packets as follows: I

1. All packets are initialized with a DR of 0.
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2. Each time a packet routes from a channel ci E to a channel c q Cq wherep>q
the DR of a packet is incremented.

3.2 The Static Algorithm

I The static algorithm divides the virtual channels of each physical channel into non-empty
classes numbered zero to r, where r is the maximum number of dimension reversals
permitted. Packets with DR < r may route in any direction but must use only virtual
channels of class DR. Once a packet has DR= r, it must use dimension order routing on
the virtual channels of class r. Thus, when a packet makes its final dimension reversal,
it must start routing in the lowest dimension in which its current node address differs

from the destination address.

Assertion I: The Static Algorithm is deadlock free.

Proof: The channel dependency graph is acyclic. Assign a number, num(ci), to each chan-
nel, c,, in each dimension, Cd,, so channel numbers increase in the direction of routing'.

I Now order all virtual channels according to their class, dimension, and number. With
this ordering, packets using the static algorithm will always traverse channels in ascend-
ing order. Thus the channel dependency graph is acyclic and the routing is deadlock
free. U

1 3.3 The Dynamic Algorithm

The dynamic algorithm divides the virtual channels of each physical channel into two non-
empty classes: adaptive and deterministic. Packets originate in the adaptive channels.
While in these channels, they may route in any direction and there is no maximum limit
on the number of dimension reversals a packet may make. However, a packet with a
DR of p cannot wait on a channel currently occupied by a packet with a DR of q if
p > q. A packet that reaches a node where all permissible output channels are occupied

I by packets with equal or lower DRs must switch to the deterministic class of virtual
channels4 . When a packet enters the deterministic channels, it must start routing in the
lowest dimension in which the current node address and the destination address differ.
Once on the deterministic channels, the packet must route in dimension order and cannot
reenter the adaptive channels.

Assertion 2: The dynamic algorithm is deadlock free.

Proof: By contradiction. If the network is deadlocked, then there is a set of packets, P.
waiting on resources (virtual channels) held by other packets in P. There exists a packet.

'This method can b,, extended to tori by using the method given in [13).I4 A packet may wait for a finiite aniount of tin before resorting to dimension order routing.

I
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Pmax, such that the DR(pma,) _ DR(q) V q E P. However, Pmix cannot be blocked since
it is not allowed to wait on a resource held by any packet with lower or equal DR. II

The dynamic algorithm is deadlock free even though it permits cycles in the network's
channel dependency graph. This does not contradict Theorem 1 of [13] as that theorem
assumes deterministic routing. In [13], R is a function, not a relation, so if a cycle
exists in the channel dependency graph, a packet is required to follow the cycle. With
adaptive routing, R is a relation. There may be many channels available to route a

packet. Deadlock can be avoided by choosing a channel that does not create a cycle in
the packet wait-for graph. 3
3.4 Routing Policy 3
The static and dynamic algorithms specify a routing relation, R. that is guaranteed
to be deadlock-free. For the static algorithm, R is statically determined from network 3
topology. For the dynamic case, R is determined by the current channel occupancy as
well as topology. Both algorithms leave open the choice of a selection function, p, to

choose the next channel of a route from among the permissible channels defined by R. i
A selection function must be concerned with issues of progress and throttling. I
Progress

The static and dynamic algorithms allow a packet to route deadlock-free along an arbi- I
trary path in a k-arv n-cube network. These algorithms by themselves, however, give no

guarantee that a packet will ever reach its destination. 3
To guarantee progress toward a destination. misrouting must be limited. Simply pro-
hibiting misrouting is too restrictive because it prevents single-dimension messages from

routing around faults and congestion. A simple method for limiting misrouting is to place I
an upper limit on the number of steps a message may take away from its destination.
Then it is easy to prove progress by showing that a weighted sum of the distance to

the destination and the number of misrouting steps remaining is strictly decreasing. A
variant on this scheme is to limit the ratio of misrouting steps to progress steps - e.g..
no more than one step back for each two steps forward. 3
Throttling 3
The adaptive virnial channel pool of the dynamic algorithm can be monopolized by
eager sources unless some form of throttling [4] is used. If many sources attempt to
inject messages into the network faster than the network is able to handle them, these

I
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new messages will consume all available virtual channels in the adaptive pool. Older
messages will be forced to revert to deterministic routing using the deterministic pool.

Throttling can be performed by using a hybrid of the static and dynamic algorithms.
The virtual channels are divided into classes as in the static algorithm. A packet with
a DR of p is permitted to select a channel of class q only if (1) p _> q and (2) there is3 no packet with a DR greater than p in a virtual channel of the same physical channel
of class q or less. This method divides the adaptive virtual channel pool into classes to
prevent new methods from consuming the entire pool. In practice, two classes, 0 and 1,

I are sufficient to limit the channels consumed by injected messages.

3 Selection Functions

There are many possible selection functions. A few possibilities are shown below. Each
selection function is shown as a list of directives. For each arriving packet, the router
attemptq the directives in order. If there is no channel available for a directive to be
applied the router moves oii to the next directive in the list after a (possibly null) timeout
period. The performance of different selection functions is evaluated by experiment below.

3e Favor minimum congestion:

1. Pick the dimension with the most available virtual channels that moves the3 packet toward its destination.

2. Misroute if permitted.3 3. Revert to deterministic routing.

* Favor routing flexibility:

3 1. Pick the dimension with the greatest distance to travel and route in the proper
direction of that dimension.

2. Route in the proper direction of any dimension.

3. Misroute if permitted.3 4. Revert to deterministic routing.

* Favor straight lines:

1. If not at the proper coordinate in the current dimension continue routing in
t lie current dimension.

2. Route in the proper direction of an\y dimension.

3. Misroule if permitted.

4. Revert to deterministic routing.

II
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4 Experimental Results 3
To measure the performance of the adaptive routing algorithms described above, we
have simulated a number of k-ary n-cube networks varying the routing relation, selection
function, and traffic patterns. Faulty networks were simulated to measure performance
degradation. 3
The simulator is a 9000-line C program that simulates interconnection networks at the
flit-level. A flit transfer between two nodes is assumed to take place in one time unit. The
network is simulated synchronously, moving all flits that have been granted channels in I
one time step and then advancing time to the next step. The simulator is programmable
as to topology, routing algorithm, and traffic pattern. 3
All of the results in this section are for 256-node 16-ary 2-cube mesh networks with 16
virtual channels per physical channel. 1
4.1 Latency

Latency is measured by applying a constant rate source to each input and measuring the
time from packet creation until the last flit of the packet is accepted at the destination.

Source queueing time is included in the latency measurement.

Figure 5 compares the performance of deterministic dimension-order routing with static
and dynamic adaptive routing under uniform random traffic. The figure shows latency I
as a function of offered traffic for the three routing strategies. Both adaptive routing
strategies used a selection function that favors minimum congestion, and both permit
misrouting. For deterministic routing, saturation occurs at 94% capacity. For static and
dynamic routing, saturation occurs at 78'X. and 68% respectively.

Random traffic loads the network channels and buffers uniformly. Thus, adaptive routing 3
affects performance only slightly for this traffic pattern. For small loads, adaptive routing
slightly reduces latency by moving packets that would otherwise be blocked. However,
above 75% capacity, adaptive routing gives a higher latency than deterministic routing. I
This is because dimension-order routing reduces contention by concentrating most of the
traffic on the through channels of each switch [9]. With adaptive routing. the switch
traffic is more uniform, resulting in higher latency.

Dynamic adaptive routing outperforms static adaptive routing at high traffic levels. The

dynamic algorithm allows more flexible buffer assignments allowing packets to make I
progress that would otherwise be blocked waiting on a particular buffer.

Adaptive routing gives a significant performance advantage for traffic patterns that load 3
channels non-uniformly. Figure 6 qhows latency as a function of offered traffic for three

I
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Figure 5: Latency vs. accepted traffic for a 16-ary 2-cube under random traffic. Deter-

ministic, dimension-order routing is compared with static and dynamic adaptive routing.
With random traffic, adaptive routing gives slightly lower latency with low traffic than

deterministic routing but saturates first.
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Figure 6: Latency vs. accepted traffic for a 16-ary 2-cube under bit reversal traffic. Deter-

ministic dimension order routing is compared with static and dynamic adaptive routing.
This non-uniform traffic pattern causes deterministic routing to perform very poorly,
saturating at about 25%c, capacity. Static and dynamic adaptive routing achieve three
times this performanct. (saturating at 60% and 75% capacity respectively) by routing to
distribute the network load. I
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i Figure 7: Throughput as a function of offered traffic for a 16-ary 2-cube network using
dynamic adaptive routing with varying degrees of throttling. Throttling reduces peak3 throughput by restricting the entry of new packets into the network.

3 routing strategies under bit-reversal traffic. In this traffic pattern, each node, i. sends
messages to node j where j is the bit-reversal of i. For example, node 4316 sends mes-
sages to node C21t;. Deterministic routing gives very poor performance for this traffic

pattern. saturating at 25(/( capacity. This saturation occurs because a few channels
become bottlenecks as in Figure IA. With adaptive routing, packets are able to route
around bottleneck channels achieving over three times the performance of deterministic
routing. The static algorithm saturates al 60% capacity while the dynamic algorithm
saturates at 75% capacity.

4.2 Throttling

Figure 7 shows the effect of throttling on network throughput. The figure shows through-
put (accepted traffic) as a function of offered traffic for a network using dynamic adaptive

routing. The simulations were run using random traffic. The curves correspond to no
throttling and throttling by restricting packets with a DR of 0 (entry packets) to use
only a single virtual channel of each physical channel.

\Vithout throttling, a network using dynamic adaptive routing is unstable. As offered
traffic is increased beyond 86(%( capacity. throughput is decreased. At saturation (all
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Figure 8: Throughput as a function of accepted traffic for A 16-ary 2-cube network using
dvnamic adaptive routing with varying degrees of throttling. Throttling increases late'lcy
by restricting the entry of new packets into the network.

sources sending all the time), throughput is reduced to 11%, capacity. I
Restricting the number of channels available to entry" packets reduces the peak throughput

from S6% capacity (no throttling) to 71 % capacity with entry packets restricted to a singh
virtual channel. Throttling degrades throughput because the lane restrictions force some

entry packets to block or turn when they would otherwise be able to make progress.
However. throttling stabilizes the network. Throughput does not significantly decrease
as offered traffic is increased. Vith throttling, saturation throughput is 66% .

Figure 8 shows the affect of throttling on latency. The figure shows the average packet I
latency as a function of accepted traffic for a network loaded with random traffic using
dynamic adaptive routing. Curves are shown for no throttling and for throttling with 1.
2, and 4 entry channels. The figure shows that throttling increases latency as the curves
for throttling approach their lower throughput asymptotes. Most of this added latency
is experienced in the queue at. the source node as less traffic is allowed into the network. 3
Figures 7 and 8 show that throttling slightly degrades latency but stabilizes the network
at high traffic rates. Another advantage of throttling is that it reduces the effect of high-

traffic sources on low-traffic sources. By restricting the entry of packets from high-traffic
sources into the network, throttling reduces congestion giving the low-traffic sources lower

1
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Entry Lanes Throughput I Percent Deterministic

1 .662 0.09
9 .716 1.35
4 .339 13.0

No Throttling .110 69.1

Table 1: Throttling reduces tile number of packets forced to route or. the deterministic
set of virtual channels. This table shows the throughput and fraction of deterministically
routed messages for various degrees of throttling under a saturation load of random
traffic.

and more predictable latency.

Table 1 shows the throughput and fraction of messages that are forced into determinisitc
routing for varying degrees of throttling under a random saturation source. With a
saturation source, each network node attempts to inject a message into the network on
each cycle. This level of traffic quickly congests all network buffers if throttling is not
employed.

The table illustrates two advantages of throttling. First, the number of messages forced
to route on the deterministic virtual channels is reduced. This improves fault tolerance
since once a packet begins deterministic routing. it is vulnerable to a single channel
fault. Second, saturation throughput is increased by throttling. Without throttling, at
saturat ion traffic all channel buffers quickly become filled with blocked messages and the
performane of the network severely degrades. Throttling restricts the tiaffic entering
the network to a level that keeps sufficient buffers available to achieve a high throughput.

The table and figures suggests that throttling with two entry lanes offers a good com-
promise between latency and stability.

4.3 Selection Function

Figure 9 compares the performance of different selection functions in handling non-
uniform traffic. The simulation was run with random traffic. The figure shows that
minimiuin-colgestion and straight-line selection functions give good performance for this
traffic pattern. Maximumn-flexibililtv routing results in higher latency and saturates at
a lower traffic level than the other two functions. The maximum flexibilitv select ion
flncion causcs messages to alternate dimensions once a diagonal to the destination is
reached. This dimension alternation results in high DR numbers and a large number
of packet s resorting to determ inistic routing. Minimum dimension reversal routing gives

17
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Figure 9: Latency as a function .I offered traffic for four selection functions. Simulations3
were performed using dynamnic adaptive routing and traffic from one row of a matrix
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5 Conclusion

Adaptive routing improves the performance and reliability of a multicomputer interconi-
nection network by routing packets around congested or faulty channels. This paper I
has described two deadlock-free adaptive routing algorithms. Both algorithms permit
misrouting and avoid deadlock by allocating virtual channels according to the number of
dimension reversals a packet has made.

In the static algorithm, there is a fixed mapping between number of dimension reversals
and virtual channels. This fixed assignment gives an acyclic channel dependency graph.

The dynamic algorithm allows more flexible channel allocation by allocating virtual chan-
nels based on occupation to prevent cycles in the packet wait-for graph. In this case, the
channel dependency graph is cyclic and adaptive routing is required to avoid deadlock.

Simulation experiments show that adaptive routing significantly improves throughput
for non-uniform traffic patterns but has little effect on performance with random traf-
fic. Adaptive routing improves throughput by a factor of three for bit-reversal traffic in
a 16-ary' 2-cube network. This traffic pattern causes non-uniform channel loads when
dimension-order deterministic routing is employed. Adaptive routing routes around con-
gested channels to balance the load. With random traffic, channels are loaded uniformly,
and load balancing is not required. 3
Throttling is required to stabilize the dynamic algorithm at high traffic rates. Throttling
is easily implemented by restricting new packets to route on a small number of virtual
channels, entry lanes, until their first dimension reversal. Throttling slightly increases
latency for uniform loads but reduces the affect of a hot-spot node on the network latency
seen by other nodes. Throttling also reduces the fraction of messages that are forced by
resource constraints to resort to deterministic routing. Simulations suggest that throt-
tling with two entry lanes effectively stabilizes the network with only a small affect on
latency.

The adaptive routing algorithms presented here can be used in conjunction with many dif-
ferent selection functions. Simulations show that minimum-congestion and straight-line
select;on functions give good performance. The maximum-flexibility selection function
results in higher latency and lower throughput because it forces packets onto network
diagonals. 3
The performance of networks using adaptive routing gracefully degrades as channels fail.
Experiments show that with 7.9W of the channels faulty, latency increases by a factor of
2.3. I

With virtual channel flow controlIl ] and adaptive routing, multicomputer networks
achieve performance approaching 90'/ of their physical capacity. This performance is I
affected littic bv non-uniform traffic patterns and degrades gracefully with channel fail-

I
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ures.

The use of adaptive routing and virtual channels motivates the use of synchronous router
design. Many early routers were asynchronous or self-timed to achieve maximum perfor-
mance [12, 14, 15]. With deterministic routing, the design of such routers was straightfor-
ward as each dimension could operate independently and no concept of global time was

required. To make use of virtual channels, however, the router must maintain timers to

distinguish between a blocked channel and one that is waiting for an acknowledgement.
In a synchronous router, such timing is implicit. Adaptive routing requires that informa-

tion from many output channels be collected together to make a routing decision. In an

asynchronous router, collecting this information poses a high synchronization overhead.

The application of these high-performance networks extends beyond connecting the pro-

cessing nodes of multicomputers. Low-dimensional k-ary n-cube networks can also be

used as data switches in a local-area or long-haul network and as a general-purpose back-

plane to connect components of digital systems. They offer a scalable alternative to buses
for general-purpose interconnection in digital systems.
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ABSTRACT Machine is detailed. Experimental results are presented in
Section 5 and the conclusion and suggestions for further work

In this paper, specialized algorithms for circuit-level simu- are contained in Section 6.
lation of grid-based analog signal processing arrays on a mas-
sively parallel processor are described and implementation re-
sults presented. In our approach, the trapezoidal rule is used 2 Problem Description
to discretize the differential equations that describe the analog
array behavior, Newton's method is used to solve the nonlinear Consider the circuit in Figure 1. an idealized version of a grid-

equations generated at each time-step, and a block conjugate- based analog signal processor used for two-dimensional image

gradient squared algorithm is used to solve the linear equa- smoothing and segmentation [Lumsdaine 90]. The node equa-

tions generated by Newton's method. Excellent parallel per- tion for a grid point i, j in the network is

formance of the algorithm is achieved through the use of a ctj = gf(Vid - Uij)

novel, but very natural, mapping of the circuit data onto the
massively parallel architecture. The mapping takes advantage +go(Vi - Vi+1j) + g.(vij - V.-,-)

of the underlying computer architecture and the structure of +9,(vij - Vi,+l) + g(Vij - vii-l) (1)
the analog array problem. Experimental results demonstrate
that a full-size Connection Machine can provide a 1400 times where ui, represents the image data at the grid point i,j,
speedup over a SUN-4/280 workstation. via is the output voltage at node ij, g1 is the input source

impedance, c is the parasitic capacitance from the grid node
to ground, and g,(-) is a nonlinear "fused" resistor. In this

1 Introduction circuit, the g, resistors pass currents in such a way as to force
vj to be a spatially smoothed version of u a , unless the dif-

The recent success using one and two dimensional resistive ference between neighboring uij's is very large. In that case,
grids to perform certain filtering tasks required for early vi- g, no longer conducts, there is no smoothing, and the image
sion [Mead 88] has sparked interest in general analog signal is said to be "segmented" at that point.
processors based on arrays of analog circuits coupled by resis- In a more complete representation of the image smooth-
tive grids. As is usually the case, before fabricating these ana- ing and segmentation circuit, the voltage source uij and the
log signal processors, substantial circuit-level simulation must source impedance gI are replaced with a subcircuit which typ-
be performed to insure correct functionality. Although desir- ically contains operational amplifiers and a phototransistor.
able. simulation of complete signal processors has not been If such a subcircuit has M internal nodes and contains only
attempted because of the computational cost. Ambitious cir- voltage-controlled elements, then it can be described by a dif-
cuits consist of arrays of cells where the array size can be as ferential equation system of the form
large as 256x256, and each cell may contain up to a few dozen d
devices [Wyatt 88]. Therefore, simulation of a complete sig- -q..o,(j((t), v.d(t), t) = f,,b( i(t), vij(t), t) (2)
nal processor requires solving a system of differential equations di
with hundreds of thousands of unknowns. where iij E *M is the vector of the ij sub-

The structure of grid-based analog signal processors is such circuit's internal node voltages, and q,,,b(bij(t),v j(t),1),
that they can be simulated quickly and accurately with spe- fu&(bi'(t), vij(t),t) E r" are the vectors of sums of charges
cialized algorithms tuned to certain parallel computer archi- and sums of resistive currents, respectively, at each of the sub-
tectures. In particular, the coupling between cells in the circuit's internal nodes. Incorporating the subcircuit's behav-
analog array is such that a block-iterative scheme can be ior into the equation for grid point i~j leads to
used to solve the equations generated by an implicit time-
discretization scheme, and furthermore, the regular structure cvi, = i.b(Vsd, Vij)
of the problem implies that the simulation computations can +g,(vij - vi+1j) + g,(vii - v,-ii)

be accelerated by a massively parallel SIMD computer, such
as the Connection Machine il[llillis 85], In the next section +98(t',,j - v,,+i) + 9g(vj - vij-i), (3)

of this paper, we describe an example grid-based analog sig- where i,b(vj,,, f,j) is the current entering subcircuit ij from
tial processor. and in Section 3 we describe the simulation grid node ij.
a4 oritliii, In Section 4. the niapping onto the Connection For our purposes, an N x N grid-based analog signal pro-I'Connection Marhine is a registered trademark of Thinking Machines cessor, or analog array, is any circuit that can be described
Corporation. by a system of equations generated by replicating Eqn. (2)



and Eqti (3) for each i, j E 1 .. N... . Note that this defini- I
tion enforces a regular structure, and only allows for coupling Size H Direct I CG I ILUCG]
between neighboring subcircuits through two-terminal nonlin- I 16x 16 II 16.53 I 11.72 I 10.27 I
ear resistors. The nonlinear resistors are usually implemented 32x32 156. .72 5 .75with transistors, so our definition of an analog signal processor 64 x 64 1 1856.12 1 272.30 1 224.12 1
still represents an idealization, although the extension to the
general case is straightforward. Table 1: Comparisons of aerial execution time for direct, CG,

and ILUCG linear system solvers when used for the transient
simulation of the circuit in Figure 1, where gf = 3.Oe - 5 and

3 Numerical Algorithms g, has a conductance of le - 3 when linearized about zero.

For notational simplicity, the system of equations that describe I
an N x N grid-based analog signal processor, defined in the 4 Connection Machine Implementa-
previous section, will be written compactly, and perhaps not tion
very' informatively, as

d The Connection Machine model CM-2 is a single-instruction-q(v) = f(v(t)), (4) multiple data (SIMD) parallel computer consisting of 65,536
N 2 x(M+) vetbit-serial processors and 2048 Weitek floating-point proces-

where q(v(t)).f(v(t)) E are the vectors of sums of sors. The bit-serial processors are clustered togeiher into
node charges and node resistive currents. groups of 16 to make a single integrated circuit, and these

The transient simulation of the analog grid involves numer- IC's are connected together in a 12-dimensional hypercube.
ically solving (4). To compute the solution, it is possible to Two IC's, or 32 processors, share a single Weitek IC. Since 3
use simple explicit or semi-implicit numerical integration algo- the CM-2 contains 2048 Weitek IC's, a speedup of a factor of U
rithms, but for these types of circuits, experiments show that 2048 over conventional computers containing a single Weitek
an implicit method like the trapezoidal rule is substantially IC (e.g., a SUN-4) is conceivable.
more efficient [Silveira 90]. The trapezoidal rule leads to the For an algorithm to approach this peak parallel performance
following algebraic problem at each time step h: on the CM, it must satisfy three requirements. First, the

+ h + f (())] = 0. (5) problem must have enough parallelism to use all the avail-
q(v(t + ht)) - q(v(t)) + vt processors. Second, the algorithm can depend only on

As is standard, the algebraic problem is solved with Newton's local or infrequent interprocemor communication, like on anymethod, parallel machine. And third, the algorithm must be mostly
data-parallel because of the SIMD nature of the Connection

JF(t/(t + h))[t."I(t + h) - vm (t + h)] = -F(t"(t + h)) (6) Machine. By data-parallel we mean:

where * One can identically map individual pieces of data to in-

F(v(t + h)) = [q(t,(t + h)) - q(v(t))] + -- [f(t(t + h)) + f(t(t))] dividual processors for all relevant processors and
; 2h7 * One can operate identically on the data with all the rele- 3(7) ~ atpoesr

and the Jacobian JF(t'(t)) is vant processors

+ q(,(t + h)) 1 0f(v(t + h)) The general circuit simulation problem violates all three of -
+h + 2h bi (8) the above constraints, and previous attempts at circuit simu-

lation on the Connection Machine have not yielded impressive
In "classical" circuit simulators such as SPICE [Nagel 75), results [Webber 87, Silveira 90]. As we will show in the rest of

the linear system of equations for each Newton iteration is this section, simulation of grid-based analog signal processors
solved by some form of sparse Gaussian elimination. When is well suited to the CM. These circuits are large, and can be
simulating grid-based signal processors, where the coupling simulated with algorithms that are mostly data-parallel and
between subcircuits is restricted to nonlinear resistors, the which depend on mostly nearest-neighbor communication be-
Newton iteration equation will be such that its solution can tween processors.
be efficiently computed by iterative algorithms like conjugate- I
gradient squared (CGS) [Sonneveld 89, Burch 89]. To demon-
strate this, in Table 1, we compare the CPU time required 4.1 Data to Processor Mapping
to compute the transient analysis of the network in Figure 1 The two-dimensional nature of grid-based analog signal pro-
using several different matrix solution algorithms to solve the cessing circuits naturally maps into a two-dimensional geom- I
Newton iteration equation. This problem is hard for an itera- etry on the CM, in such a way as to maintain data paral-
tive method because, though not described here, the transient lelism and locality. The circuit is divided into identical cells
analysis is performing a continuation on the nonlinear resis- (as shown in Figure 1) and each processor is assigned the data
tor elements that changes the conditioning of the matrix with associated with each cell, with nearest-neighbor grid cells be-
time (see [Lumsdaine 90] for details). As the table indicates, ing mapped to nearest-neighbor processors. It is an important

sparse Gaussian elimination is much slower than CGS2 or ILU point that the assigned data includes the node voltages, cur-
preconditioned CGS, both of which perform almost identically. rents, charges and derivatives, but not a complete description
This is a fortunate result, because our goal is to develop an ef- of the cell, only the CM's front-end computer has that.
ficient parallel sinn!ator. and unpreconditioned CGS is easiest It can be seen from Figure 1 that some elements in each
to parallelize cell cross the cell boundaries, and the communication so im-

'This problem is symmetric, so ('(T and s landard conjugate-gradient plied must be organized carefully to maintain maximum data- I
are equivalent parallelism. In our approach, copies are made of shared-nodes,

I



g, 4.2 Device Evaluation
Vi. . Evaluating the right-hand side and the J--cobian for the New-

ton iteration, equation (7), involves computing sums of device

9 Uijcurrents and charges. Given the previous discussion of the
- 'Idata to processor mapping, the device evaluation portion of

the simulation is obvious:

1. Copy node voltages from shared nodes to pseudo-nodes
(voltage consistency step)

l 2. Evaluate cell devices in parallel

............... 3. Sum node charges and currents from pseudo-nodes to
shared nodes (charge and current consistency step)

Figure 1: Grid of nonlirnear resistors and its division into iden- 4.3 Linear System Solution
tical cells. As mentioned in the previous section, for the case of grid-based

analog circuits, solving the linear Newton iteration equation
(6) using CGS is not only easy to parallelize, it is faster thanIusing sparse Gaussian elimination, and nearly as fast as us-
ing ILUCGS. There are two parts of the CGS iteration which
involve parallel data: the vector inner product and the matrix-
vector product. The vector inner-product is accomplished
with an in-place multiply and a global sum. The matrix-vector

product y = Ax is accomplished with the following sequence
of operations:

1. Copy z values from shared nodes to pseudo-nodes (voltage
consistency step)

2. Perform matrix-vector product with simple-cell matrix

Figure 2: Separation of the cells by duplicating nodes. The 3. Sum y values from pseudo-nodes to shared nodes (current

shared nodes and pseudo-nodes are outlined with squares and consistency step)
triangles, respectively. That the operations involved in the matrix vector product are

similar to those required for the device evaluation should come
by which we mean nodes within each cell to which elements as no surprise. The communication steps are still required for
from other cells are connected. These copies are referred to consistency, and the device evaluation step is now replaced
as pseudo-nodes. As can be seen in Figure 2, using pseudo- by an in-place matrix-vector product where the local matrix
nodes implies that the data for the cell devices is contained corresponds to the linearized conductance matrix of the simple
completely within the cell. cell circuit.fl Two types of consistency between the shared-nodes and
pseudo-nodes must be maintained through interprocessor com-
munication, namely: 5 Experimental Results

In order to test our algorithms, a simulation program wasVoltage Consistency: Pseudo-Nodes must have the same written for the CM, using MIT's $1MLAB program [Sin-dab] as

voltage as their corresponding shared nodes a base. The parallel portions of the code were written in C*

Version 6.0, a CM superset of C. The front-end experiments

Chargand Current Consistency: Charges and currents were run on a conventional SUN-4 workstation and the CM
spowingto the pseudo-nodes are summed at the corre- results were obtained on a 16K CM-2 with double-precisionsponding shared nodes. floating point hardware. All computations were performed in

double precision arithmetic.
This particular mapping of the circuit data insures that the In Table 2, the CPU times required on the CM and the

many cells in a large grid can be simulated in a data-parallel SUN-4/280 to perform the DC and transient analysis of the
fashion. That is, simulation of the entire grid is accomplished nonlinear resistive grid of Figure 1 are compared. Only a 16k
by simulating a simple cell using many copies of data, and then processor CM was available, but using the 'virtual processor"
en forcing the voltage, charge, and current consistencies for the feature of the CM, the 256 x 256 example was simulated as if
shared nodes and pseudo-nodes. Note that the cells on the east the CM had 64K processors. A real 64K machine would have
and south circuit boundaries respectively do not have east and run the 256x 256 example approximately four times faster, and
south connecting elements In order to model this properly on have produced simulation results approximately 1400 times
the CM. boundary processors are turned off whenever data faster than a SUN-4/280 workstation.
correspconding to non-existent elements is manipulated. For To investigate how well simulation of more realistic circuits
rea soijs of clarity we will omit further discussion of this oper- can be accelerated, the CM simulator was tested on an ideal-
ati, 14: it is performed in a straightfurmard manner for all the ization of the Retina chip [Mead 88]. To generate the Retina-
algorithrniLs to be presented like circuit, the voltage source u,,, and the source impedance



nodes in less than 10 minutes.
D Trans Our future work will be to extend the simulator to allow

Size Serial CM Serial more general cell interconnection and to investigate whether

64 x 64 147.47 3.96 268.47 1 6.28 further speed improvements can be obtained through the use
128 x12 3.99 7581.70 44.99 of nonlinear Krylov subspace methods - the nonlinear ana-256x256 2710.2) 10.84 (214110.4) 610.27 logue of CG.
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